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CHAPTER 1 
 

SETTING THE SCENE 
 

Zbigniew W. Kundzewicz & Alice Robson 
 
 
Structure of this report 
 
This document is the result of an International Workshop on Detecting Changes in Hydrological Data 
that was held in Wallingford from 2 to 4 December 1998. The primary aim of this document is to 
serve as a handbook for practitioners and numerate scientists who need to undertake analyses of trend 
and other changes in hydrological data. The following chapters contain recommendations and general 
guidelines for the detection of change and should serve a broad audience. The document will also be 
useful to statisticians, but it is not aimed solely at them. Where appropriate, references are provided 
for those willing to undertake further, more detailed studies. 

This report begins with core material and then moves on to outline more advanced and 
specialist topics. The core material is presented in Chapters 1-5. The remainder of this introductory 
chapter sets the scene for studies of change in hydrological series. It is followed by an overview 
chapter that is particularly aimed at those who are relative newcomers to the topic of trend detection. 
Its function is to assist the reader in solving her or his particular problem. It introduces some of the 
most fundamental concepts and suggests how to approach the study of change. 

Data is the backbone of any attempt to detect trend in long time series and Chapter 3 
discusses the types of data that are available and the issues relevant to selecting suitable series. It is 
followed by a chapter on methods of exploratory data analysis i.e. visual approaches to studying data. 
These are techniques that let the data speak for themselves and that encourage exploration and 
improved understanding of the data. Exploratory data analysis is a critical component of any statistical 
analysis of time series; here methods that are particularly appropriate for hydrological series are 
described. 

Chapter 5 provides the main theoretical component of this document. It discusses different 
methods of testing for change e.g., parametric and distribution-free approaches. It provides guidance 
as to recommended testing procedures, to the underlying assumptions, and to interpretation of test 
results. 

The remaining chapters of this guide cover a number of specialist and more advanced topics. 
These will be highly relevant to some studies, and not appropriate in other circumstances. In most 
cases, each chapter provides an outline of the topic and summarises possible approaches to analysis, 
giving references to more detailed studies. Topics covered include hydrological extremes, seasonality, 
regional and multivariate approaches, changes in persistence and variability, segmentation methods, 
design of a dedicated observation network for change detection, methods for looking at simultaneous 
changes in mean and variance, and phase randomisation methods for series with autocorrelation. 

A brief discussion of available software packages is also offered. The specialist nature of the 
topics that are covered here means that there is no one user-friendly package available that allows use 
of all the methods that are discussed below. 

 
 

Why undertake an analysis of change? 
 
Detection of trends in long time series of hydrological data is of paramount scientific and practical 
significance. Water resources systems have been designed and operated based on the assumption of 
stationary hydrology. If this assumption is incorrect then existing procedures for designing levees, 
dams, reservoirs, etc. will have to be revised. Without revision there is a danger that systems are over 
or under designed and either do not serve their purpose adequately or are overly costly. 

Studies of change are also of importance because of our need to understand the impact that 
man is having on the “natural” world.  Urbanisation, deforestation, emissions of greenhouse gases, 
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changes in agricultural practice and dam construction are just a few examples of anthropogenic 
activities that may be altering important aspects of the hydrological cycle. 

The principal water-related problems have been always related to having too much water 
(floods) or too little water (low flows or droughts). This means that studying changes in 
characteristics of hydrological extremes is of major importance. 
 
 
Climate variability and change 
 
A key question at present is to understand climate change impacts: is there evidence of climate change 
in hydrological series? Can we distinguish climate change from natural variation in the climate? Can 
climate change be distinguished from other progressive environmental changes such as urbanisation? 
In order to address the issue of climate change it is essential to understand the meaning of the term 
“climate change”, as opposed to “climate variability”. Since various bodies dealing with climate 
change use slightly different meaning of this notion, some exemplary definitions are listed in the 
Appendix to this Chapter. Loosely speaking “climate change” can be thought of as describing a long-
term underlying shift in the climate, whilst “climate variability” encompasses the natural variation in 
our climate that would be seen even in the absence of any underlying long-term change. 

In the case of river flows, the problem of detecting a climate change signature is very 
complex. Increasing concentrations of greenhouse gases in the atmosphere cause temperature rise, 
which, in turn, enhances potential and actual evapotranspiration. What goes up must come down, 
therefore some precipitation growth is expected. Runoff is the difference between rainfall and 
evaporation, both of which are increasing, so the net effect on runoff is not intuitively clear. 

The strong natural variability of river flow makes it difficult to detect any underlying climate 
(greenhouse) signature. Flow fluctuations have been occurring naturally since the dawn of history, 
some of these changes being rather stronger than anything seen recently. A further problem is how to 
distinguish change linked to climate change from changes arising from land use change signature. 
 
 
The scope of hydrological change studies 
 
There are many different ways in which changes in hydrological series can take place. A change may 
occur abruptly (step change) or gradually (trend) or may take more complex forms. Changes can be 
seen in mean values, in variability (variance, extremes, persistence) or in the within-year distribution 
(e.g. changing seasonality and river flow regimes). Abrupt changes can be expected as a result of a 
sudden alteration within the catchment e.g. reservoir construction, installing water diversions, etc. 
They can also inadvertently arise from changes to gauging structures, or to rating curves (stage-to-
flow relationships), or to observation methods. Gradual hydrological changes typically accompany 
gradual causative changes such as urbanization, deforestation, climate variability and change. 
Although climate change is often thought of in terms of progressive trend, it is also possible for it to 
result in a step-like change because of complex dependencies on non-linear dynamic processes that 
feature cumulative effects and thresholds. 

There are a huge variety of hydrological data that it is possible to analyse for irend and step 
change. These may be collected at a range of temporal intervals: continuous, hourly, daily, monthly, 
annually, or sampled irregularly. Data records contain either instantaneous values (e. g., of flow, 
stage) or totals for a time interval (e.g., precipitation). Data may also pertain to different spatial scales, 
from point or experimental plot to large areas (including the Globe). 

Studies of hydrological change are typically complicated by factors such as missing values, 
seasonal and other short-term fluctuations (climate variability) and by lack of homogeneity (e.g. due 
to changes in instruments and observation techniques). In some cases, there are further problems 
because of censored data and data series that are not sufficiently long. 
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Approaches to testing for change 
 
There are many approaches that can be used to detect trends and other forms of non-stationarity in 
hydrological data. In deciding which approach to take it is necessary to be aware of which test 
procedures are valid (i.e. the data meets the required test assumptions) and which procedures are most 
useful (likely to correctly find change when it is present). 

Parametric testing procedures are widely used in classical statistics. In parametric testing, it is 
necessary to assume an underlying distribution for the data (often the normal distribution), and to 
make assumptions that data observations are independent of one another. For many hydrological 
series, these assumptions are not appropriate. Firstly hydrological series rarely have a normal 
distribution. Secondly, there is often temporal dependence in hydrological series, particularly if the 
time series interval is short (e.g. today’s flow tells us quite a bit about what tomorrow’s flow is likely 
to be). If parametric techniques are to be used, it may be necessary to (a) transform data so that its 
distribution is nearly normal and (b) restrict analyses to annual series, for which independence 
assumptions are acceptable, rather than using the more detailed monthly, daily or hourly flow series. 

In non-parametric and distribution-free methods, fewer assumptions about the data need to be 
made. With such methods it is not necessary to assume a distribution. However, many of these 
methods still rely on assumptions of independence. More advanced approaches must therefore be used 
for daily or hourly series.  A very useful class of non-parametric tests are permutation tests. They are 
based on changing the order (shuffling) of data points, calculating statistics, and comparing these with 
the observed test statistics. 

Even within the basic categories above it is necessary to choose tests that are appropriate for 
the situation. Some tests are very good at detecting a very specific type of change, other tests may be 
good at picking up any one of a broad range of possible changes. Since one does not know the pattern 
of variability beforehand, using a number of tests is sensible. 
 
 
The current picture 
 
A number of long time series of observations of hydrological variables from across the world have 
been studied to determine whether there is evidence of climate change in these series. Most of these 
series are for river flows and lake levels, and several analyses have been performed. At present, there 
is no conclusive evidence of a climate change signature. Findings reported in specific works cannot be 
generalized and to a large extent appear to be localised chance occurrences. A similar picture holds 
for analyses of flood and drought series. It must be remembered that although no strong evidence of 
climate change has been found in hydrological series, this is not proof against climate change. It 
seems that longer data series will be required before it becomes possible to identify any climate 
change effects and it remains important to continue collecting data and to undertake further studies. 
 
 
The future 
 
This guide is focused on presenting recommended methods based on current day knowledge. 
However, there are clearly areas in which further developments are needed. These can be broadly 
broken down into the need for further data, and a need for developments in statistical methodology. 

A key requirement in terms of data is to obtain and extend long high-quality worldwide data 
series. National Hydrological and Hydrometeorological Services in many countries are facing severe 
financial stringencies and there is a need to ensure that valuable stations, often in remote non-
populated areas are not closed down. These stations may contribute in an important way to studies on 
detection of changes in flow characteristics. Chapter 11 discusses related aspects in more detail and 
also considers the problems of obtaining data from pristine catchments, where rivers have not been 
regulated nor major land use changes have occurred. 

A viable extension of studies of observed long time series of instrumental hydrological data is 
to obtain and analyse proxy information, such as tree rings, coral increments, lake deposits, etc. 
Studying isotopic composition of ice in deep boreholes allowed the scientists to reconstruct the 
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conditions of remote past with an amazingly accurate resolution. As the processes leading to the 
build-up of proxy archives are natural, homogeneity of these data has not been influenced by 
changes in instrumental data collection (in contrast to many hydrological records). 

There remains ample scope for improvements in analytical methods. Some 
possibilities include 

• Improved guidance as to which tests are best able to detect change under a realistic set 
of assumptions. 

• Development of multivariate methodologies that look at flows alongside other 
hydrological variables 

• Development and application of improved regional methodologies 
 
 
WCP-Water context 
 
The present document and the International Workshop on Detecting Changes in Hydrological 
Data, held in Wallingford from 2 to 4 December 1998 are contributions to a project entitled 
“Analyzing Long Time Series of Hydrological Data and Indices with Respect to Climate 
Variability and Change” of the World Climate Programme - Water (WCP-Water Project 
A.2). The WCP-Water is an international endeavour aimed at studies of links between 
climate and water. it is jointly implemented by a number of international agencies (notably 
the World Meteorological Organization, WMO and the United Nations Educational, 
Scientific and Cultural Organization, UNESCO), and national institutions. WCP-Water 
Project A.2 capitalizes on research financed at the national level and the international context 
makes it possible to encourage national efforts, to compile information on national research 
in the area and to blend the results produced there. 

In the former stages of the project there was a worldwide data collection initiative 
during which the Secretary-General of the WMO contacted National Hydrological and 
Hydrometeorological Services of WMO Member countries, requesting them to forward long 
time series of river flow data from non-regulated rivers. A software package TIMESER was 
developed in WMO Secretariat and used worldwide as a tool for analysis of properties of a 
long time series of hydrological records. The above data base and the software served for 
analysis undertaken within the Project A.2 of some 200 long time series of hydrological data 
sets. It was found that, for a substantial number of data series tested, there was some evidence 
that the mean and/or variance of flows could be changing A number of project meetings have 
been held and a number of reports produced. In the project, it was agreed that the 
methodology of tests needs further work and that a comparison of available tests would be 
useful. The current report attempts to make recommendations on best practice given current 
day knowledge. 

It is hoped that the Project A.2 will continue to stimulate further international 
activities worldwide in the strong and important growth area of trend detection in 
hydrological data. 
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Appendix 
 

DEFINITIONS OF CLIMATE VARIABILITY AND CHANGE 
 
 
Definitions of climate change and climate variability given by World Climate Research 
Programme, WCRP; Intergovernmental Panel on Climate Change, IPCC and Framework 
Convention on Climate Change, FCCC) are given below. 
 
(1) Climate change 
WRCP usage (WMO,1988, p. 3): 

“Climate change defines the difference between long-term mean values of a climate 
parameter or statistic, where the mean is taken over a specified interval of time, 
usually a number of decades”. 

IPCC usage (IPCC, 1996, P. 48): 
“Climate change as referred to in the observational record of climate occurs because 
of internal changes within the climate system or the interactions between its 
components, or because of changes in external forcing either for natural reasons or 
because of human activities. It is generally not possible to make clear attribution 
between these causes. Projections of future climate change reported by IPCC 
generally consider only the influence on climate of anthropogenic increases in 
greenhouse gases and other human- related factors.” 

FCCC usage (IPCC, 1996, p. 48): 
“A change of climate which is attributed directly or indirectly to human activity that 
alters the composition of the global atmosphere and which is in addition to natural 
climate variability observed over comparable time periods.” 

 
(2) Climate variability 
WMO (1988, p. 3): 

“the extremes and differences of monthly, seasonal and annual values from the 
climatically expected value (temporal means). The differences are usually termed 
anomalies.” 

WMO (1988, p. 4): 
“climate variability can be regarded as the variability inherent in the stationary 
stochastic process approximating the climate on a scale of a few decades, while 
climate change can be regarded as the differences between the stationary processes 
representing climate in successive periods of a few decades”. 
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CHAPTER 2 
 

ANALYSIS GUIDELINES 
 

Alice Robson 
 
 

2.1 Aim 
 
The aim of this chapter is to give a picture of how the various stages of an analysis fit 
together and provide an overview of the core methods that are recommended in this report. It 
also serves as a gentle introduction to some of the most important concepts. This chapter 
attempts to remind scientists that to analyse a dataset requires much more than just a blanket 
application of statistical tests. 
 
 
2.2 The process of analysis 
 
The main stages of an analysis are 

• Obtaining and preparing a suitable dataset 
• Exploratory analysis of the data 
• Application of statistical tests 
• Interpretation of the results 

The process of analysis is one of iteration, development and refinement. Figure 2.1 
summarises how an analysis typically proceeds and shows its cyclic nature. At any stage, the 
analyst needs to be open minded and to recognize when the results have further implications 
that are themselves worthy of exploration. Thus, for example, a series of flow data on a river 
may be found to show trend. This then raises the question of whether the trend is due to 
urbanisation or to climate change. To address these questions it may be helpful to obtain and 
examine rainfall data and/or data from other nearby non-urbanized catchments. 

 
Fig. 2.1. Flow chart illustrating the main stages in a statistical analysis of change. 
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2.3 Obtaining a suitable dataset 
 
In many studies, a specific dataset is the focus of study and the question is whether the data 
shows any evidence of trend or other change. In other cases, one has a particular question in 
mind and is seeking the right data to best answer the question. Even when there is a specific 
dataset of interest, it is still important to consider other available sources of data. For 
example, when investigating change in flow series it is often helpful to obtain rainfall data 
too. Chapter 3 gives further details on the many types of data that are of relevance to 
detecting change in hydrological data and of some possible sources of such data. 

Obtaining a suitable dataset sounds straightforward but, in practice, it can require care 
and skill.  There are many important aspects that may need to be considered when obtaining 
and preparing data. These include 

• Quality of data 
Data should be quality controlled before commencing an analysis of change. The 
analyst should, however, never assume that the data is set in stone and should always 
be on the lookout for further data problems. A very frequent problem in long 
hydrological series is that methods of measurement have often changed over time: it 
is advisable to investigate possible changes in data collection methods 

• Length of record 
Data series should be as long as possible. Short data series can be strongly affected by 
climate variability which can give misleading results (Section 5.7.2). For investigation 
of climate change, a minimum of 50 years of record is suggested - even this may be 
not be sufficient. 

• Missing values and gaps 
Missing values and gaps in a data series make analysis harder and raise questions of 
data quality (see above). It is important to consider whether gaps are truly random, or 
whether they are perhaps associated with major flooding making the remaining data 
unrepresentative. Many of the methods recommended in this report can still be 
applied to incomplete data series provided that the gaps are not too extensive and that 
they occur randomly. 

• Frequency of data 
Hourly, daily, monthly and annual data series are commonplace. In a few cases (e.g. 
flood series), the data may be irregular. Very frequent data contains more information 
but can also be harder to analyse both computationally and because more restrictive 
assumptions must be made (see also Section 2.5). 

• Use of summary measures 
It is often appropriate to analyse time series that have been derived from the raw data. 
For example, it may be sensible to calculate mean monthly flows from a daily flow 
series, or to derive an annual maximum flow series. Again the choice will depend on 
the question that is being addressed and the depth to which the analysis can be taken. 

• Use of transformation 
Hydrological data is often highly skewed and non-normal. In such cases, data analysis 
can sometimes be assisted if the data is first transformed (see also Section 4). 
Further detail on the above issues, together with discussion on a number of other data 

related aspects is presented in Chapter 3. Chapter 11 also discusses important aspects related 
to selecting data series, and applies this to the problem of choosing a suitable network of data 
for study of climate change. 
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2.4 Exploratory data analysis 
 
Exploratory data analysis (EDA) is a very powerful graphical technique that is a key 
component of any data analysis. Full details of exploratory data analysis, including a range of 
examples and illustrations, are given in Chapter 4. Exploratory data analysis is itself an 
iterative process and it should be used at more than one stage of an analysis. Its first use is to 
examine the raw data. This may identify further interesting aspects of the data, such as 
seasonality, which in turn invite further investigation. Exploratory data analysis also has an 
important role in helping to check out test assumptions. For example, having fitted a trend to 
the data, exploratory data analysis can be used to examine the residuals to check for 
independence (Section 4). In some cases, this may mean that the model needs to be altered 
then revisited using EDA. Finally EDA can provide a very valuable means of presenting both 
the data and the results in a way that maximises understanding and impact. 
 
 
2.5 Statistical analysis 
 
Chapter 5 contains a detailed description of recommended approaches to analysing change in 
hydrological series. Here, a few of the most fundamental concepts are described by way of 
introduction. The aim is to give a general background understanding of the main ideas, but 
not to provide the detail, which is left to Chapter 5. 

A key recommendation made in this report is that resampling methods be used for 
testing hydrological data. Resampling methods are methods that use the data to help 
determine significance levels. They are very useful in the context of hydrological data 
because they do not require distributional assumptions to be made. There are two main types 
of resampling:  permutation testing and bootstrapping methods. 

A permutation test works by shuffling the data very many times. Consider a time 
series of data with a possible trend. One measure of the trend is the regression gradient: an 
example of a possible test statistic. Suppose first that there is no underlying trend in the data. 
If that is true, then it should not matter very much if data is reordered - the regression 
gradient should not change very much. Each time the data is shuffled as part of the 
permutation test, the selected test statistic (in this case the regression gradient) is recalculated. 
At the end of all the shuffling, we have generated a distribution of possible values of the test 
statistic under permutation, the permutation distribution. The permutation distribution usually 
depends on the data and must be recalculated for each data set If there is no trend, then we 
would expect that the observed test statistic (regression gradient) for the original data is not 
very different to any of the generated test statistic values, i.e. it is somewhere in the middle of 
the permutation distribution. So to test for trend, the observed test statistic (regression 
gradient) is compared with the permutation distribution. If the gradient is larger (or smaller) 
than almost all the values in the permutation distribution, we conclude that a trend is present. 
Conversely, if the original gradient is somewhere in the middle of the permutation 
distribution, we conclude that there is no evidence of trend. 

There are two main steps in applying a permutation test. 
• Choosing a suitable test statistic. 

Permutation testing is a very flexible approach and many test statistics can be used 
within the permutation framework. Different statistics tend to pick out different 
features of the data, so it can be helpful to use more than one, e.g. a linear regression 
gradient (or equivalent statistic) to look at trend, and a statistic such as Buishands’ Q to 
look for step change. 
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• Calculating the permutation distribution for the test statistic 
The permutation distribution is derived using the data (as described above). It must be 
recalculated for each data set and each test statistic. Once known it can be used to 
determine significance levels. 
Bootstrapping approaches are similar to permutation techniques. The main difference 

is that instead of reordering the data, the new data series are generated by sampling with 
replacement. For example, for a series of 50 values, a bootstrap sample would take 50 values 
at random from the original series: the resulting series might perhaps include 3 lots of the 
original first value, but no instances of the last value. 

Although use of resampling approaches avoids the need to make distributional 
assumptions (e.g. that the data is normally distributed), it still requires some assumptions to 
hold. An important remaining assumption is that the data are independent. Frequently 
measured hydrological data (daily or hourly data in particular) are typically not independent: 
they show dependency from one value to the next (if flow is high today it is likely to be high 
tomorrow). This type of dependency is referred to as serial dependency, temporal dependency 
or autocorrelation. If it is present, but conveniently ignored, then it can result in inaccurate 
significance levels. A very simple technique to avoid problems of dependence is to average 
or aggregate (e.g. monthly data may often be treated as being independent whereas daily data 
cannot). However, data with serial dependency can instead be tested using resampling 
methods. In this case, the data is permuted or bootstrapped in blocks (e.g. all values within a 
year are kept together). With this approach the dependency structure within each block is 
built into the test and independence assumptions are thus no longer violated. Note that there 
are also alternative ways of tackling this problem (Section 5.5.2). 

 
 

2.6 Interpretation 
 
The final interpretation of the results brings together the information gained out of all stages 
of the analysis. Thus it combines information about how the data was obtained, historical 
information about the catchment or region, graphical information gained from exploratory 
data analysis and the statistical test results. It is often appropriate to present results and the 
interpretation using both graphs and tables. 

Great care is often needed when interpreting results. For example, with short data 
series there may be a statistically significant trend, but in combination with other information 
the most sensible conclusion could be that the trend is a chance occurrence that would 
probably not have been seen if a longer record had been available. 

Chapter 5 provides more details on interpretation of test results. 
 
2.7 Taking things further 
 
The above summary outlines only the most fundamental ideas used in an analysis of 
hydrological change. These topics are covered in much greater detail in Chapters 3-5. 

In many situations it may be appropriate to apply more specialised methods. The 
choice of which method to use will depend on the data and the particular problem. For 
example, it might be useful to consider multivariate techniques, or to use approaches tailored 
to regional data or to investigate seasonal aspects. Chapters 6-13 provide introductory 
information on many important special topics that may be valuably used alongside the basic 
techniques described above. 
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CHAPTER 3 
 

HYDROLOGICAL DATA FOR CHANGE DETECTION 
 

Paul Pilon, Zbigniew W. Kundzewicz & David Parker 
 
 

Hydrology is the study of water, dealing with the entirety of the hydrological cycle that is 
including liquid, solid and gaseous water. 

Hydrological data serve many purposes, including the documentation, detection and 
quantification of climate variability and change, and improving our understanding of the 
climate system and the links between the climate system and other systems. Hydrological 
data are extensively used in various endeavors of process modeling, assessment of impacts 
and development of response strategies. 

The Global Climate Observing System (GCOS) is an international framework for 
development of a comprehensive long-term global observing system aimed at improving our 
understanding of the climatic system and its interactions with other systems. It provided 
(GCOS, 1997, p. 14) an extensive but not necessarily exhaustive list of the key hydrological 
variables whose observation is required for climate purposes. The list embraces such 
variables as atmospheric water content near the surface (relative humidity), biogeochemical 
transport from land to oceans, evapotranspiration, discharge (runoff), groundwater storage 
fluxes, precipitation, sediment load at large river mouths, soil moisture and surface water 
storage. Moreover, a number of variables related to the cryosphere were listed. Some of these 
include snow cover, its depth and water equivalent, lake and river freeze-up and break-up 
dates, and characteristics of ice caps and glaciers. Each variable of concern was discussed in 
GCOS (1997) in the context of identifying users, rationale of observations, frequency and 
spatial resolution, accuracy, measurement methods, present status and required actions. 

Since it is neither possible nor desirable to measure everything, as this would 
constitute continuous measurement of many hundreds of variables, everywhere, GCOS 
(1997) suggested a five-tier hierarchical sampling scheme embracing a wide range of cases. 
On one extreme there are a few locations with frequent observations of a large number of 
variables, while on the other extreme there are many locations where a few variables are 
measured infrequently. A plan for terrestrial climate-related observations provides a rationale 
for the structure and implementation of the initial global observing system (OCOS, 1997). 

Different hydrological indices might be of interest due to their ability to reflect 
changes in climatology and for improving our understanding of the links between climate and 
hydrology.  Examples of such variables read: 
-  Long historical records of ice cores, sediment cores, streamflow, groundwater levels, etc. 
-  Easy to monitor variables such as percentage of land area covered by snow, timing of 

river freeze-up, break-up date of ice, number of ice covered days, number of ice free days, 
etc. 

-  Extreme events (frequency and severity of floods and droughts, which need not 
necessarily be a consequence of extreme climatic conditions) and their characteristics 
such as the number of incidences of independent flood events within a hydrological year 
or season and the cumulative deficit below a prescribed threshold such as the n annual 
discharge for a hydrological year or season. 

-  Seasonal mean flow (depending on season, more or less influenced by both temperature 
and precipitation) 

-  Monthly mean flow (depending on season, more or less influenced by both temperature 
and precipitation) 

-  Spring flood volume and the duration in days of the spring flood event. 
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Timing of seasonal events is also seen as important index of change. Such aspects include: 
-  start of snowrnelt season (mainly influenced by spring time temperature) 
-  snowmelt flood-peak (mainly influenced by spring time temperature) 
-  maximum flow (influenced by temperature and precipitation) 
-  timing of freeze-up of rivers/lakes (mainly influenced by autumn temperature, but also 

wind) 
-  timing of ice break-up for rivers/lakes (mainly influenced by spring temperature, but also 

affected by e.g. snow-cover and wind) having an annual resolution minimum flow. 
The selection of sites and data for monitoring and analyzing climatic change and 

variability depends on the specific objectives of the study (cf. Chapter 11). For example, if 
the objective is to search for a greenhouse component in a hydrological process subject to 
substantial natural variability, it is essential to eliminate other influences. Therefore, data 
unaffected by local human influences would be selected. Otherwise it would be necessary to 
reconstruct a natural flow series - the difficult process of flow naturalization. By contrast, 
other studies will use data in basins where there have been known modifications to the 
hydrological processes and seek to assess their effects. 

The selection of data for studying climatic variability and change requires an 
appreciation of the processes affecting the hydrological cycle and of the causal relationships 
between variables and processes. The temporal and spatial intervals between observations are 
important aspects of the record and must be chosen to match the processes. For example, if it 
is desired to monitor the maximum streamflow, monthly averages would be too coarse. It is 
also easier to analyze observations made at regular time intervals (e. g. daily, weekly) while 
some data such as water quality are typically collected at irregular intervals. 

The user needs to gain an appreciation of the characteristics of the data that are to be 
used in analyses. This embraces the information about how the measurements were made and 
how the data were generated. These could constitute what is referred to as metadata. 
Information is also required about conditions in the basin and how they may have been 
modified, both spatially and temporally. 

The data may have been obtained from a sequence of different instruments of 
different accuracy, entailing the possibility of biases in distributions and mean values. Other 
biases may have arisen from modifications to the catchment hydrology (e.g. change of land 
use, urbanization, deforestation, river regulation). There may also be gaps in the record. Gaps 
in the data my have been filled, and the assumptions used in filling the data will invariably 
affect the results (e.g. infill techniques by use of historical values under assumption of 
stationarity, or interpolation based on values of neighbouring points in time and space). The 
data may also have been modified and quality controlled (e.g. via outlier detection). 
Knowledge of the process for controlling the quality of the data is essential in the context of 
the “garbage in garbage out” (GIGO) syndrome. Knowledge of the accuracy of the data and 
its inherent suitability for analytical purposes is an integral aspect of the process. 

Some variables are observed, while others are derived (data products) by the use of 
some models of varying degrees of complexity. For example, the data may have been 
generated using a hydrological model to assimilate available observations. Often, 
hydrological variables are measured point-wise, yet in order to quantify hydrological 
processes these variables need to be extended to cover areas (catchment or rectangular grid) 
and a difficult issue of transforming point values into spatial aggregates comes about. Some 
other variables of essential importance, such as area! evapotranspiration, are not directly 
measured but are derived from observations of other variables. 

Some hydrological variables are measured in a time point (e.g., instantaneous value of 
river stage), others are measured in a time aggregated form (e.g., daily precipitation). If the 
data are provided in derived forrn the derivation, e.g., spatial averaging, may have filtered the 
data and may have removed or modified some features of interest. 
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The issue of representativeness of data for large areas also needs to be considered. At 
present, there is a certain bias due to the existence of many rain gauges in the cities and in 
mountain valleys worldwide. This poses a difficult problem of extending point values to give 
spatially representative coverage, particularly in under-represented geographical regimes. 
There is also the apparent problem of the local representativeness of a site’s data. An 
important example is the climate station in the urban environment to represent ambient 
conditions. 

In order to assess climate variability and change and their impacts within the 
hydrosphere, it is necessary to analyze long time series of observational data. In many cases, 
long time series of instrumental data are not available. This may make it necessary to extend 
the time coverage by blending data from different sources of different quality, incorporating 
pre-instrumental data (e.g. qualitative records in chronicles and archives, proxy data and 
palaeodata). Fortunately, data are increasingly available in electronic form. It is well 
recognized, however, that additional efforts are required to digitize remaining manuscript 
data, although some activity is ongoing in this area. 

In recent years, data of hydrological value have been obtained using remote sensing 
from satellites. As these records rarely exceed 20 years in coverage, they are of limited value 
for detection of long-term changes. In addition, satellite data sets are often very voluminous 
(gigabytes) and therefore are more difficult to process. But, a major advantage of such data is 
that they are usually geographically expansive and can therefore be used, with the aid of 
appropriate techniques, to interpolate between in-situ measurements. Remotely sensed data 
can also be used to help understand process hydrology. Note that satellite data may possess 
their own biases owing to changes of instruments, calibrations, orbits, and atmospheric 
transmission. 

Global archives of both in-situ and satellite hydrological data and metadata are being 
developed. Such archives, which are also referred to as data centres, include the already well 
established Global Runoff Data Centre in Koblenz, Germany, and the Global Precipitation 
Climatology Centre in Offenbach, Germany. In addition, many data are held in national 
archives or in research institutions; their inclusion in the global archives is a desirable 
objective. 

The Global Runoff Data Centre (GRDC), set up in the Federal Institute of Hydrology 
in Koblenz, Germany in 1988, is an implementation of a World Climate Programme - Water 
(WCP-Water Project A.5 - Collection of Global Runoff Data). It provides a general service 
for the collection and storage of internationally available sets of daily and monthly river flow 
data at the global scale and the generation of data products. The data bank comprises data 
from over 3500 stations, from nearly 150 countries. 

Discharge data are collected under the following criteria (WCASP, 1997): 
-  large rivers with average discharge greater than 100 m 
-  basins with catchment areas greater than 1 000 000 km 
-  basins with more than 1 000 000 inhabitants and basins of high socio-economic 

importance 
-  basins with internal drainage 
-  long-time series of runoff(WCP-Water Project A.2) 
-  undisturbed areas up to 5000 km 
-  runoff into the oceans (WCP-Water Project A.8, GEWEX, GEMS/Water, GCOS, GTOS). 

Aside from these criteria, discharge data are collected on a project basin, e.g. for 
regional hydrological analysis such as the ACSYS project. 

Requests for data, and data products, can be made in writing to the GRDC. The 
charges requested for data cover the costs of handling, diskettes, packing and postage. The 
charges could be waived if the requesting body was a contributor of data to GRDC. 
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The Global Precipitation Climatology Centre (GPCC) set up in the German Weather 
Service in Offenbach, Germany in 1988 is a component of the Global Precipitation 
Climatology Project (GPCP) integrated in the Global Energy and Water Cycle Experiment 
(GEWEX). It covers the functions of collection, quality control, correction and gridding of 
precipitation data at the global scale, measured by raingauges. The GPCC data cover over 40 
000 hydrometeorological stations from more than 130 countries. The Centre has contributed 
to the WCP-Water Project B.6 — Precipitation of Monthly Global Gridded Precipitation Data 
Sets. 

The spatial coverage of data assembled in data centres is still far from being 
satisfactory. The reasons being that in some countries, data collection programmes are either 
weak or non-existent. Even in other countries where data are being collected, there is a 
reluctancy to provide large sets of hydrological data to others. Under such circumstances, the 
WMO’s call for free and unrestricted exchange of hydrological data and products deserves 
considerable attention. Systematic and comprehensive global observations are much needed 
and should be made available to all nations. Hydrological networks worldwide are not 
adequately funded and, at the global scale, they are shrinking rather than expanding. In many 
cases, this leads to breaking of the continuity of hydrological records, even when there exist 
valuable long-time-series of hydrological data for a given location. 

Chapter 11 also provides more detailed information on the appropriateness of data and 
criteria for the possible selection of sites for analysis. 
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CHAPTER 4 
 

EXPLORATORY / VISUAL ANALYSIS 
 

Howard Grubb & Alice Robson 
 
 

4.1 Introduction 
 
4.1.1 What is exploratory data analysis? 
Exploratory data analysis (EDA) involves using graphs to explore, understand and present 
data and is an essential component of any statistical analysis. 

Exploratory data analysis is an iterative process. At each stage, graphs are plotted and 
then refined so that the important features of the data can be seen clearly. Often patterns or 
features emerge that need further exploration. These might include seasonal variation, 
correlation or a problem with some data values. Because it is an exploration of the data, no 
two analyses will be the same. 
 
4.1.2 When is exploratory data analysis needed? 
Exploratory data analysis is needed whenever data is being examined, or a statistical analysis 
is undertaken. It is an underused technique. A study of non-stationarity that does not include 
a thorough EDA of both the data and the results is not complete. 

Exploratory data analysis can and should be used at more than one stage of an 
analysis. It is particularly important to use EDA before statistical tests are applied: without a 
proper understanding of the data, test results can be meaningless. EDA is also invaluable 
when it comes to understanding, interpreting and presenting the results of a statistical 
analysis, e.g. to examine residuals, trend gradients and significance levels. 
 
4.1.3 Why use exploratory data analysis? 
Exploratory data analysis allows a much greater appreciation of the features in data than 
tables of summary statistics and statistical significance levels. This is because the human 
brain and visual system is very powerful at identifying and interpreting patterns. It is often 
able to see important features, structures or anomalies in a data series that would be very 
difficult to detect in any other way. Just looking at the data can change initial preconceptions, 
can alter the questions that it is sensible to ask, and can uncover important aspects that would 
never otherwise have been found. 

A well-conducted EDA is such a powerful tool that it can sometimes eliminate the 
need for a formal statistical analysis. Alongside EDA, statistical tests become a way of 
confirming whether an observed pattern is significant, rather than a means of searching 
through data. 

Some examples of aspects of the data that EDA is likely to uncover include: 
• temporal patterns (e.g. trend or step-change) 
• seasonal variation 
• regional and spatial patterns 
• data problems (outliers, gaps in the record etc.) 
• correlations (between variables or sites). 
If identified, many of the above can be further explored using EDA. EDA can also be 

used to examine issues such as 
• independence and autocorrelation 
• statistical distribution of data values 
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• details of the seasonal structure. 
EDA is often useful in identifying data quality problems. However, it is not a substitute 

for proper quality control of data. 
 

4.1.4 Who should do exploratory data analysis? 
Exploratory data analysis can be used by anyone who is trying to understand data. It is not 
difficult and it does not require great expertise. It does require care and thought and a 
willingness to probe further. A good EDA requires sensible use of properly produced graphs 
(see Appendix A. 1 on style issues). The information gap between a good graph and a poor 
graph should not be underestimated. 

There are currently many software packages that implement various tools for 
exploratory data analysis (see Appendix A.2 for relevant points about software). These range 
from spreadsheet packages that are widely accessible and allow a good start to be made, 
particularly with dynamic plots linked to the data, through to more flexible and powerful 
packages for which a level of programming ability is needed (see Appendix A.2 on software). 
A number of the graphs shown in the following sections were produced using spreadsheet 
graphics. 
 
4.1.5 How to go about an exploratory data analysis  
Exploratory data analysis involves: 

• plotting graphs 
• studying the graphs 
• re-plotting graphs to improve the display of important features 
• identifying further graphs that are needed 
• iterating through the above. 
In the following pages a toolbox of graphical approaches is presented. The list is not 

intended to be exhaustive, but specifically selects graphs that have been found to be of 
particular use for examining changes in hydrological time series. Not all graphs will be useful 
for all data sets and some situations may demand novel combinations or modifications of the 
basic graphs as well as more specialised graphs for specific applications. Deciding which 
graphs to look at is a matter of judgement and experimentation. 
 
4.1.6 Chapter Overview 
The remainder of this chapter looks in more detail at a variety of graphs. Section 4.2 presents 
some of the most fundamental graphical approaches - ones that are likely to be used most 
frequently in EDA for hydrological time series. Subsequent sections look at these and other 
methods in more detail and present graphs that address particular aspects of the data (e.g. 
seasonality). These sections also give some guidance on issues to be aware of when 
producing a graph. Two appendices summarise some issues on graphing style and on 
currently available software. 
 
4.2 Fundamental components of an EDA 
 
This section introduces some of the most useful techniques for looking at hydrological data. 
These techniques allow the user to rapidly view and assess the available data. Here, as in the 
rest of this chapter, it will often be the case that only some of the approaches are applicable 
for a specific data set, and graphs must be selected according to need. 

The techniques can be applied to both the raw data and, at a later stage in the analysis, 
to derived quantities such as summary statistics, residuals and test results. Use of these graphs 
should allow identification of the most important features of the data (Section 4.3). In 
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particular, they enable visual assessment of any trend or step-change — and can indicate how 
great trend is relative to overall variation. 
 
4.2.1 The time series plot 
Most hydrological data is in the form of time series — observations of a variable recorded 
sequentially through time. The most fundamental plot for examining these is a time series 
plot of the data values against time, since the ordering in time is a key characteristic of the 
data, particularly when interest is in changes. Although the concept is simple, it can require 
some skill to produce a time series plot that best displays the features of the data (Fig. 4.1). 
For example, it may be necessary to plot the data on more than one scale or to transform the 
data. If the data series is very long, the display may be improved by spreading the data series 
over several plots, or by plotting summary statistics. More details are given in Section 4.3. 

Interpretation of the time series plot is often aided by adding a smoothing curve (and 
sometimes a regression line) to follow the general trend in the data. Care must be taken to 
ensure that the level of smoothing is suitable for the data (see Section 4.3). 
 

 
Fig. 4.1. Nitrate concentrations (mg/i) for the river Tweed, Southern Scotland. The upper 
graph shows a 40 year time series of concentrations recorded every month, from which it can 
be seen that there is some seasonal structure, plus a number of outliers. The lower graph 
shows a locally weighted smoothing curve and the annual averages. The lines are plotted 
separately from the data in order that the long-term variation is emphasized. The graphs 
suggest that average nitrate concentrations peaked in the early 1980’s. 
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4.2.2 Multiple time series plots 
When data from several sites or variables are available, it can be informative to examine the 
series together, e.g. presenting data for several sites within a region on a single page (Fig. 
4.2). Patterns become more apparent when many time series are shown beside one another, 
and it can be easier to detect data problems and to identify whether behaviour is similar 
between sites. Note that it is clearer to plot multiple series on separate graphs than on a single 
one, which would quickly become cluttered for more than a few series. 
 

 
Fig. 4.2. Orthophosphate concentrations (mg/i) for 10 rivers within the Humber catchment 
area, England. The data sampling interval varies from weekly to monthly intervals and 
changes over time and from site to site. Plotting on a common scale clearly illustrates the 
very different concentrations present in these rivers. A seasonal component to the variation 
can be seen and this might merit further investigation. It would appear that concentrations 
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have risen most on the Don, a highly industrialised river system. Most of the time series show 
decreased orthophosphate concentrations since 1990, possibly related to reductions in 
phosphates used in domestic washing powders (a major source of orthophosphate). Some 
longer-than-average periods without sampling can be seen on the Soar. For regular data, it 
would be preferable to show a break in the time series line where there is a gap in the record. 

For multiple time series plots it is desirable to use a common scale for all time axes — 
this presents the data in the clearest way and makes it possible to rapidly assess the 
similarities and differences between sites. If possible it is also best to use a common scale on 
the y-axes (Fig. 4.2). It may however be necessary either to allow the y-axes scales to vary, or 
to use a method of standardisation., in order that the variations in the series are visible for all 
sites. As with single time series plots, a common enhancement is to add smoothing curves 
and regression lines to multiple time series plots (Fig. 4.3). 
 

 
 
Fig. 4.3. Number of floods per year for 6 rivers in Southern Scotland. A locally-weighted 
smoothing curve and a regression line have been fitted to the data. A common time scale is 
used in all graphs. The graphs suggest a similar pattern of behaviour at all sites, i.e. more 
flooding in the early 1960’s and the late 1980’s, less flooding in the mid 1970’s. For the three 
longest records this results in no overall trend, but for the shorter records, a significant trend 
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can be seen (upwards for the earlier Breich Water record, downwards for the later Allan 
Water and Leny). It seems reasonable to conclude that trends at the short record sites would 
probably not have been seen if the full period of data had been available, i.e. these are trends 
that are unlikely to continue into the future. 
 

 
 
Fig. 4.4. Scatter plot matrix showing the relationships between the time series of dissolved 
concentrations of five metals measured at two different sites in Northern England (shown in 
grey and black), with apparently different relationships. More sites could be shown if colour 
was used. The graphs show (a) positive correlations between B, Ni and Sr, (b) negative 
correlation between Fe and the three metals listed in (a), (c) little or no relationship between 
Ba and the other metals, (d) that the ratio of B to Sr is different at the two sites (the gradients 
seen on the B:Sr graphs are different at the two sites). 
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Note that a multiple time series plot is an example of a “small multiples” plot (Tufte, 
1983), i.e. a large plot containing repeated graphical units. Small multiples can be useful for 
presenting other types of information too e.g. maps, bar charts etc (see under simple spatial 
plots below). 
 
4.2.3 Scatterplots 
When time series for two variables or sites are recorded at coincident, or close to coincident 
time points, a scatterplot of pairs of values at these time points can be used to assess common 
variation between the sites or variables. This simply involves plotting a point for each 
variable (or site) for each common time point on separate axes. The relationship between the 
variables (or sites) is then displayed — a tendency to increase together can be easily seen and 
a smoothing line can help draw the eye towards this. 

When the number of series increases, scatterplot matrices (Fig 4.4) can be used to 
show all pairs of variables (or sites). As the name suggests these consist of a block of scatter-
plots presented in matrix form, each variable (or site) being plotted against all other variables 
(or sites). 

Scatterplot matrices are most often used when different variables have been recorded 
(at one or many sites), but can also be used to look at a single variable measured at different 
sites. Scatterplot matrices are useful for identifying relationships between variables or 
between sites (including correlation) and for spotting outliers. Colour and interactive visual 
tools (such as brushing; Cleveland, 1993) can also be profitably used with scatterplot 
matrices. 

As before, a smoothing curve can aid interpretation by highlighting the general 
relationship between the variables. Residuals from this curve can also indicate which points 
deviate from a relationship. 
 
4.2.4 Simple spatial plots 
When information is available on the spatial location of data from multiple sites, a spatial plot 
can give a better indication of variation in these dimensions. In their simplest form, a 
summary measure, such as the mean value or a trend gradient, is plotted at the geographical 
location of each site (Fig. 4.5). Care may be needed in choice of plotting position! map 
projection (see Appendix A.l). The magnitude of the value plotted may be denoted by symbol 
size or by use of a colour scale. Spatial plots are good for identi1 spatial patterns and 
anomalies. Note that this basic type of plot does not apply any smoothing to the plotted 
values, which might affect the patterns. It will be most clear for relatively sparse spatial data. 
For dense spatial sampling, some kind of spatial smoothing may help to reduce the clutter, 
although suitable choice of symbol and colour scale can also provide a clear picture. 

It is difficult to. display more than a few variables on a single map, so that for 
multivariate data, each variable can instead be plotted on a separate map — in “small 
multiple” form if appropriate (Fig. 4.6). 

If the continuous spatial variation of a variable measured at different sites is of 
interest, then simple displays of snmmaries as symbols on maps (as above) may be 
inadequate. Instead a “surface” or contour plot representing levels of the variable will be 
needed (e.g. Fig. 4.7). These require some form of regional smoothing for display (unless the 
sites are regularly-spaced), which assumes that sites that are close together are more likely to 
be similar than sites that are far apart. Various regional smoothing methods are available. 
They include kriging (Isaacs & Srivastava, 1988), which makes explicit assumptions about 
the covariance between measurements at different sites, and loess in 2-D (Cleveland & 
Devlin, 1988), which uses a simple weighting of the distances between sites. For variables 
with a continuous scale of measurement some form of regional smoothing can be useful to 
show general, spatial trends as the data locations become denser. 
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Fig. 4.5. Map showing the results from an analysis of trends in UK flood data. The length of 
the data series, range from 15 to over 100 years depending on the site. Most series end 
between 1980 and 1990. Around 600 sites were tested. The symbols have been categorised 
into five levels and indicate the strength and direction of the trends. There are more 
incidences of increased flooding than decreased flooding, particularly in Scotland and the 
South East of England. 
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Fig. 4.6. Maps of mean concentrations (µg/l) for 6 chemical determinands measured on rivers 
in the Humber Estuary, eastern England for the period 1983 to 1985. The map shows an area 
of about 160 km with rivers and coastline marked. At each site, the symbol area represents 
the average total concentration and is broken into dissolved (black) and particulate (grey) 
components. The northern rivers show relatively low concentrations (they are rural and with 
low population density). The southern rivers are affected by domestic and industrial effluents. 
Chromium has particularly strong industrial sources relative to the background levels seen in 
the North. 
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Fig. 4.7. Contour plot of a smoothed interpretation of a regional trend analysis (Lins, 1997) 
applied to mean monthly streamflow at 559 stations across the United States for January 
between 1941 and 1988.  High values indicate how strongly significant the increase in 
streamflow was across the region (correlation with an estimated regional trend). 
 
 

4.3 Further points for time series plots 
 
When plotting time series graphs, the data should generally be displayed as either (i) 
individual points connected with lines if there are up to about 100 values, (ii) connected lines, 
if there are many values (Fig. 4.8), or (iii) unconnected points if the data is irregular. If there 
are missing values in an otherwise regular series then the line should be broken at these 
points. It is sometimes necessary to plot lines through irregular data when there are very 
many values. 

When the scatter of values is such that the variation is dominated by (a few) large 
values, a time series plot can often be improved by a data transformation. The goal is to 
visualise the variation in the data in the clearest way, so that the interesting variation occupies 
as much of the plotting space as possible. A suitable transformation will reduce the extreme 
variation. For hydrological series the most common transformation is to take logarithms of 
the data (Fig. 4.9). NB, use of logarithms is only possible if all data values are positive. 

Fig. 4.9 also illustrates the need to adjust the plot aspect ratios (the ratio of height to 
width) depending on the data variation, and the length of the series (Appendix A.l). Sensible 
choice of aspect ratio can mean that important features of the data are more easily seen (Fig. 
4.9). For very long series, it may be sensible to split the data to produce plots of more 
manageable size. Cleveland (1993) and (1994) has other examples of the use of aspect ratios 
to reveal the features of data variation. 
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Fig. 4.8. (a) - (d) show basic time series plots of the annual flow (cms) in the river Nile at 
Aswan, Egypt from 1870 to 1944 (75 years). (a) is the default plot produced by the 
spreadsheet package and makes poor use of the available space. Plots (b) - (d) are 
alternatives, with plot (c) or (d) being the best choice in this particular instance. Plot (b) 
shows points but loses the continuous nature of time. The use of lines in (c) is recommended 
for a large number of regular data points (with the line broken when there is a break in the 
data), while a combination (d) is useful for up to about 100 points. Note also that the range of 
some variables may be far from zero, so that the y-axis may need to be broken e.g. plots (b) - 
(d) do not include zero, so as to give maximum range on the plot to the variation of interest. 
 
 

It is usually helpful to add a smoothing line to a time series data plot. This highlights 
the general local trend (changes in level) in the data. A smoothing line is ideally obtained 
using some form of robust smoothing (such as a running median or loess, locally-weighted 
regression — Cleveland & Devlin, 1988 and Cleveland et. al., 1988). Most plotting software 
is capable of producing a smoothing line to go through regular data e.g. running medians are 
straightforward to calculate in a spreadsheet. For irregular data more sophisticated smoothing 
methods will be needed — some implementations of loess are suitable. 

To see more subtle types of change, particularly in variation, it can often be powerful 
to remove the dominant source of variation and plot the residuals (e.g. Fig. 4.10 (e)). This is 
particularly true if the reason for the underlying variation is well known (e.g. seasonality). 
This is a technique that can be valuably used in more complex situations, e.g. see the seasonal 
decomposition examples below. 
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Fig. 4.9. (a)-(b) show the monthly mean flow (cumecs) of the river Nile at Aswan, Egypt 
(March 1870 to December 1945 – 910 values).  (a) shows the flow on the original scale, 
where the variation is dominated by the large values.  (b) shows the flow on a logarithmic 
(base 10) scale, this evens-out the high and low variation and gives a better idea of the long 
time-scale fluctuations in the series.  (c) shows the first 25 years (again on log scale), it now 
becomes possible to see the asymmetry of the seasonal pattern (this was not visible in plots 
(a) and (b) above). 
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Fig 4.10.  Four types of trend line fitted to the annual Nile data from Fig. 4.8 (a) shows a 
straight linear regression line, (b) a fitted quadratic, (c) a running median and (d) a loess 
smooth.  The line in (d) most closely adapts to the variation in the data and suggests a step-
change rather then a continuous trend.  (e) shows the residuals from the trend line in (d) 
giving an indication of changing variability in different portions of the series. 
 
 
4.4 Seasonal variation 
 
Hydrological data often contains noticeable cycles – e.g. a seasonal cycle will usually be 
apparent in monthly data, while daily cycles might be observed in hourly measurements.  
There may be other approximately cyclic variations at longer time-scales, such as modes of 
climate variability.  These will generally not be as regular (i.e. with fixed periods) as seasonal 
variation and should be considered separately. 
 To study seasonal variation requires regular or nearly regular observations, e.g. one a 
month or one a season, more frequent observations being preferable.  It is usually helpful to 
extract the seasonal patterns and then to examine the variation about these general patterns in 
more detail (see below).  If the seasonal period is fixed and known (it is generally annual) any 
display needs to take account of this. 
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4.4.1 Smoothing seasonal data 
When a smoothing curve is plotted through seasonal data, the objective is usually to identify 
the long-term changes and not just the seasonal variation. To achieve this, the smoothing 
window should cover a full cycle of data or number of cycles. If using a running mean, it is 
also preferable to align the period of averaging with the seasons, e.g. in Fig. 4.11 (b) better 
results are obtained if the annual average is started at the lowest part of the seasonal cycle in 
May. If too narrow a smoothing window is used the data may be under-smoothed (e.g. Fig. 
4.11 (d)). 
 

 
 
Fig. 4.11. Smoothing lines fitted to monthly Nile flow data of Fig. 4.9. (a) is an annual 
average (on the log scale), (b) is an annual average starting at the lowest part of the seasonal 
cycle in May - it gives clearer results, (c) is a loess smooth with a reasonable degree of 
smoothing, (d) is a loess smooth with too little smoothing, showing seasonal as well as 
longer-scale variation. 
 
 
4.4.2 Seasonal patterns 
If the seasonal patterns are of interest they can be extracted by grouping all observations 
within each season together — e.g. for monthly data, collect together all Januarys, all 
Februarys etc. This can be easily achieved within most software packages by grouping on a 
variable that indicates the month. The plots below have been produced in the statistical 
package MINITAB (see Appendix A.2). 

Seasonal patterns can be viewed in relation to the within-season variability by 
combining a line-plot of the underlying average seasonal pattern with boxplots that show the 
variation within the seasons. Fig. 4.12 shows that the flow always peaks in September, while 
the within-month variation is higher in the low flow parts of the year (February-July) as 
might be expected. Better representations of the seasonal variation can be obtained if the 
seasonal residuals are used, for this the average annual levels are first removed from the data, 
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and then the seasonal pattern and seasonal variation in the residuals are examined (Fig. 4.12 
(c), (d)). The annual level can be obtained from either a running mean or a smoothing curve. 
Plotting seasonal residuals will give a better representation of the seasonal pattern, since 
longer-term variation between the years has been removed. 
 

 
Fig. 4.12. Seasonal boxplots of the monthly Nile flow data of Fig. 4.9, showing the variation 
for each month of the year - each boxplot shows median (joined with line), lower and upper 
quartiles in the main box, indicating the main variation in the numbers, while the ‘whiskers’ 
show the full range of the data variation for that month, over all of the years of the data. Plot 
(a) shows that the seasonal pattern peaks in the late summer. By starting the seasonal pattern 
in May (b), a clearer representation of the seasonal shape, that emphasizes the asymmetry, 
can be seen. The lower graphs look at seasonal variation after removing the average annual 
variation shown in Fig. 4.11 (b) above. Plot (c) uses the annual average from a running mean, 
starting in May, and plot (d) uses the annual level as estimated from the smoothing curve in 
Fig. 4.11 (c) above. Plots (c) and (d) give better representations of the seasonal pattern. 
 
 
4.4.3 Seasonal decomposition 
The seasons extracted from Fig. 4.12 (c) and (d) above have had the effect of year-to-year 
variations in the series removed. This is equivalent to decomposing the data yt into: 
  (4.1) tttt esly ++=
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where lt is the estimate of the annual mean or loess smooth at time t, st is an estimate of the 
seasonal effect, and et is a residual error term. The seasonal effect is represented as the 
deviation from an annual level and takes a fixed value for each season (month in this 
example). For example, the seasonal effect could be represented using the medians of the 
boxplots in Fig. 4.12 (c) or (d). The residual errors or remainders, et can be seen, in this 
example, as the variation within each monthly boxplot in Fig. 4.12 (c) and (d). 
Decompositions such as these can be done in various ways, including building complete time 
series models of the variation (Kendall & Ord, 1990, Dagum, 1978, Cleveland et al., 1990 
and Hillmer & Tiao, 1982). For descriptive purposes the method above — calculating a 
smooth annual level and subtracting this from the data to obtain the seasonal residuals (st + et) 
will usually be sufficient, although care must be taken to ensure that the smooth is 
representative, so that the seasonal component contains only the variation between seasons. 
The components of the decomposition can be displayed in various ways — for instance a 
composite time series plot of the components can be useful (Fig. 4.13). 
 

 
 
Fig. 4.13. Trend, seasonal and remainder decomposition of monthly Nile flow data (a), 
showing long-term changes in level (b), regular seasonal variation (c) and residual variation 
(d). This illustrates how the data is broken down into the various components, so that (a) = 
(b) + (c) + (d). Note the comparable ranges of the y-axes of each subplot. 
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4.4.4 Seasonal sub-series 
Individual components of the decomposition can be explored in various ways, e.g. seasonal 
residuals can be summarised by boxplots as above, or individually to see changes in each 
seasonal sub-series. Fig. 4.14 shows the seasonal residual (st + et) for each July (recall that st 
is constant for any particular month) from the monthly Nile flow data. 
 

 
 
Fig. 4.14. Sub-series of July seasonal component of monthly Nile flow data, with smooth 
trend, showing an apparent decrease in July flows through the period, relative to the rest of 
the year. 
 
 

Seasonal sub-series can be displayed for all of the seasons together using a composite 
plot built out of components such as Fig. 4.14. This gives a plot that shows the overall pattern 
of seasonal variation as well as sub-series of changes within each season (Fig. 4.15). Any 
changes in annual level are removed and the position and size of the 12 monthly boxes 
indicate the relative seasonal median and variation for each month. The seasonal sub-series is 
shown within each monthly box as in Fig.4.14. 

Fig. 4.14 and Fig. 4.15 show changes in seasonal pattern occurring over a 25-year 
period. It is also of interest to examine the full 75-year record. Fig. 4.16 shows the changes in 
June seasonal residual for these 75 years. It appears that June flows have been increasing 
relative to the other months, even taking account of annual fluctuations — i.e. June has been 
becoming less extreme (low). Fig. 4.17 shows a composite sub-series plot for the full 75-year 
series, which suggests a similar effect in May and April. 

Note the outlier that occurs in month 11 (November 1896; Fig. 4.17). This is probably 
a data coding error; the recorded value is 43.3, but a more sensible value for this month 
would be 433 (the median value in November is 265). 
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Fig. 4.15. Seasonal sub-series plot of monthly Nile flow data for the first part (1870-1895) of 
the record. The position and size of the 12 monthly boxes indicate the relative seasonal 
median and variation for each month. Within each box the seasonal sub-series for each month 
are shown as in Fig. 4.14. This is effectively ordering the values in the boxplots of Fig. 4.12 
as time series. The plots show the general seasonal shape (mid-point of boxes) and trend and 
variation within each season (month). 
 

 
Fig. 4.16. June seasonal sub-series and smooth trend for complete monthly Nile flow data 
from 1870-1945. The June flows can be seen to be increasing towards the annual median (0 
residual) through the years. 
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Fig. 4.17. Seasonal sub-series plot for complete monthly Nile flow data from 1870-1945. 
May, June and April show patterns of increasing flow towards the annual median. Other 
months seem stable relative to the median. A possible outlier can be identified in November. 
 
 
4.5 Residual analysis (checking test assumptions) 
 
Most tests for detecting change make some assumptions about the data, or more particularly 
about the residuals from a suitable model for the data. For example, a test based on linear 
regression has a model that the mean changes linearly over time, the main assumptions are 
that the residuals are independent and are normally distributed. Other types of test will make 
differing assumptions. Exploratory data analysis is a valuable way of checking that test 
assumptions hold. 
 
4.5.1 Distributional assumptions 
Many common statistical tests make assumptions about the distribution of the residuals. For 
example linear regression assumes a normal distribution. If a normal distribution is assumed, 
but the residuals actually follow a distribution that is skewed or heavy-tailed (e.g. there are 
some very large values) then this can affect the significance level of the test, and render the 
result incorrect. 

Note that many of the tests recommended in this report are distribution-free tests, i.e. 
tests that do not require assumptions to be made about the distribution of the residuals. In 
these cases the test results are not sensitive to the distribution of the residuals 

Boxplots, histograms and quantile plots can be used to examine the distribution of 
residuals. Histograms show the general shape of the distribution (Fig. 4.18). Quantile or q 
plots simply plot the data values against their rank, or against the equivalent quantiles from a 
reference distribution e.g. the normal (Fig. 4.19). If the quantile plot gives a straight line then 
the data can be assumed to come from the required distribution. If the quantile plot deviates 
significantly from a straight line then this indicates departure from the assumed distribution 
and indicates which part of the data deviates from this distribution. Quantiles display the data 
without smoothing, which can be useful. For example, plots of the untransformed Nile data 
(Fig. 4.20 - 4.22) show asymmetry, confirming the need for the log transformation. 
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Fig. 4.18. Histogram (with smooth estimate) and boxplot (below) of residuals from seasonal 
model for monthly Nile flow data showing reasonable symmetry. 
 
 

 
 
Fig. 4.19. Quantile-quantile (normal) plot of residuals from seasonal model for monthly Nile 
flow data. This distribution is very slightly skewed — some of the high and low values are 
higher than the equivalent quantiles of a normal distribution (line). 
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Fig. 4.20. Seasonal pattern of flow (original scale) of monthly Nile flow data. This is the 
equivalent of Fig. 4.12 for the original data - the asymmetry and heteroscedasticity indicates 
non-normality and confirms that a transformation (in this case log) is required. 
 

 
 
Fig. 4.21. Histogram (with smooth estimate) and boxplot of residuals from seasonal model 
for monthly Nile flow data (original scale). This appears to show a longer-tailed distribution 
than a normal. 
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Fig. 4.22.  Quantile-quantile (normal) plot for residuals from seasonal model for monthly 
Nile flow data (original scale). These residuals do not follow a normal distribution — both 
tails, particularly the lower, are longer than the equivalent normal quantiles. 
 
 
4.5.2 Independence 
Most tests for detecting change assume independence of the sample values. The tests 
presented in this report are no exception. If independence cannot be assumed then block- 
bootstrap and block-permutation methods are recommended (see Chapter 5). These avoid 
independence assumptions by building the dependencies in the data into the test. 
 

 
 
Fig. 4.23. Autocorrelation of annual Nile data showing apparent positive correlation between 
observations up to 8 years apart. Values that lie above (or below) the dotted lines indicate that 
there is a significant correlation at the lag (in years) indicated. If the data values were 
independent then most correlation values should lie between the dotted lines. 

38 



Independence means that knowing the current value of a variable provides no 
information about what the next value will be. This clearly does not hold for time series data, 
which are usually correlated due to being observed frequently or seasonally. For example, 
knowing today’s flow provides a lot of information about what tomorrow’s flow is likely to 
be. One way to quantify the extent of the correlation (dependence) is to calculate the 
autocorrelation function (ACF — see e.g. Kendall & Ord, 1990). Autocorrelation is a 
measure of the correlation of a variable with itself, but with the time shifted. For example, a 
lag 1 autocorrelation for a daily series is the correlation between the series and the same 
series but moved 1 day. The lag 2 autocorrelation is the correlation with a time difference of 
2. The autocorrelation plot shows the correlations at a series of lags (Fig. 4.23 — Fig. 4.26). 
If autocorrelation is present at one or more lags then the data is not independent. A sample 
variogram (Isaaks & Srivastava, 1989) can be used in a similar way to the autocorrelation 
plot when data is irregularly spaced. 
 

 
 
Fig. 4.24. Autocorrelation of annual Nile residuals after removing the trend. The correlation 
has reduced markedly, leaving only small dependency between values up to 3 years apart. 
 

 
 
Fig. 4.25. Autocorrelation of monthly Nile flow data showing very strong seasonal (12 
monthly) correlation indicative of strongly seasonal data. It can be seen that each month is 
similar to the same month the previous year (lag 12 months). 
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Fig. 4.26. Autocorrelation of seasonal residuals from monthly Nile flow data.  Once the 
seasonal variation has been explained by a simple seasonal pattern, the remaining correlation 
dies out after three months or so.  The negative correlation at lag 12 is most likely due to 
assuming a constant seasonal pattern when it is changing slightly. 
 
 

Care is required in interpreting autocorrelation plots when there is an underlying trend 
or long-term fluctuation in the data. This is because trend causes apparent autocorrelation, 
e.g. compare Fig. 4.23 (raw data) with Fig. 4.24 where the underling fluctuation (estimated 
by a smoothing curve) has been removed and the residuals show much less correlation. 

Autocorrelation can also be used for data on shorter time-scales, e.g. for monthly data 
the seasonal influence is apparent (Fig. 4.25). However, if the ACF of the residuals from the 
seasonal decomposition of Fig. 4.13 is examined, it shows greatly reduced correlations, 
although still significant from month to month (Fig. 4.26). 
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Appendix A.1 
 

PLOTTING PRACTICE AND STYLE 
 
 

Some general points to consider for all plots (where relevant): 
1.  Axis ranges — these need not always include zero and for multiple graphs should be 

common if the range of variation makes this possible. Also, if there are a few extreme 
points that dominate the variation; consider transforming or removing these points to see 
the variation in the rest of the data. 

2.  Fill the plot area — the aim is to display the variation in the data, so the axes, aspect ratio 
and titles should be controlled to give most of the space on the plot to the interesting 
variation. 

3. Aspect ratio — the shape of the plot can be varied and correct choice of the aspect ratio 
(height to length) can make a big difference to the features that are shown. Try differently 
shaped plots to see the effect — generally make the plots longer when the data series is 
long. It may be necessary to split a time-series plot into a number of consecutive 
segments if the series is very long. 

4.  Labelling, titles, legends — these all help to identify aspects of a graph. Generally, axes 
should be clearly labelled, with sufficient tick marks to identify points. Axis titles and an 
overall title are also useful, but are not necessary on each plot in a small multiple with 
common ranges. Legends are only necessary when different lines or points need to be 
distinguished. Care needs to be taken that the axes are labelled at sensible intervals, 
particularly if dates are involved. 

5.  Gridlines — these can help to read off values, or compare them easily with a target, but 
too many of them make the display cluttered and they should normally be shown as 
dotted or greyed. 

6.  Symbols, size, number — symbols for points should be small enough to avoid cluttering 
the plot, but large enough to distinguish between different types, if present. For data that 
falls into categories, or is otherwise discrete, perhaps due to measurement rounding, it can 
be helpful to “jitter” points (adding a small amount of noise) to move them slightly away 
from the common value. 

7.  Points vs lines — lines should only be used when there is a connection between the 
points, such as consecutive in time or when there are a large number of points. Gaps 
should be left for missing values. 

8.  Use of colour — this is often over-used. Essentially it is only necessary if used to display 
another “dimension” on the graph, for which it can be powerful. Always consider how 
many different elements of variation are being displayed to determine whether colour is 
necessary. It can often be clearer to produce multiple black-and-white plots than to try 
and put all of the information on a single one with categories in different colours. 

9.  Map co-ordinates - 1 minute of latitude and longitude are quite different at high latitudes, 
so ideally positions should be converted to kilometres from a reference point, or for large 
regions a correct map projection should be used. 

10. Smoothing lines - These can be running means or locally weighted smoothing lines 
(Cleveland & Devlin, 1988). Care must be taken that the degree of smoothing is 
appropriate for the data, e.g. if seasonality is present the smoothing window must cover a 
number of years. 

11. Small-multiples - there are some style issues that are important for “small multiple” 
graphs. For example, maximising each graph compared to the axes, keeping the spacing 
between each graph small, using a uniform x-axis scale, sometimes just labelling the axes 
on the outside edges. 
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Appendix A.2 
 

SOFTWARE NOTES 
 
 

Possible software packages range from spreadsheet packages (such as Excel) through desktop 
statistical packages (such as MINTTAB) to powerful statistical programming languages (such 
as S-PLUS and its freeware version, R). 

Spreadsheet packages can allow many of the basic plots to be produced. However, 
care is often needed. Beware of the following: 

• Time is a continuous variable and so should not be plotted as categories (which is the 
default in some, for example, spreadsheet packages), particularly if observations are 
made at irregular intervals, as can often be the case for hydrological series. 

• There are sometimes limitations on the number of points that can be displayed by a 
package. 

More complex plots will require software with some programming capability — though 
often only fairly basic. However, the power to decompose the variation into interesting 
components and to highlight subtle types of change, which cannot be seen in a simple time 
series plot of the data, makes this well worthwhile. 

Complex spatial displays are not available in all software packages and few will have 
satisfactory methods of smoothing, or displaying sub-plots at spatial locations, making some 
programming expertise essential. 

The plots shown in this section were produced using a combination of Excel, MINITAB 
and S-PLUS. The plots of seasonal components were produced in the statistical package 
MINITAB, using a simple macro based upon ‘recording’ the code for a standard plot, and 
modifying this code. The coding is reasonably straightforward and gives complete control 
over layout, titles etc. Excel was used for the simpler time series plots. S-PLUS was used for 
the small multiples and some of the spatial maps. 
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CHAPTER 5 
 

STATISTICAL METHODS FOR TESTING FOR CHANGE 
 

Alice Robson, Andras Bardossy, David Jones & Zbigniew W. Kundzewicz 
 
 

5.1 Introduction 
 
This chapter deals with statistical methods for formal testing of change. These methods are 
intended to be used as one part of the process of statistical analysis, i.e. alongside data quality 
control, visual exploratory data analysis etc. An overview of how the various stages of a 
statistical analysis fit together is given in Chapter 2. 

The chapter begins by summarising some of the basic statistical concepts needed for 
testing change (Section 5.2) and then introduces a selection of statistical methods that are 
available for testing for change (Section 5.3). It looks in detail at distribution-free methods, 
particularly resampling methods such as permutation and bootstrapping (Section 5.4). 
Distribution-free methods can be applied even if data is strongly non-normal - as is typically 
the case for hydrological series. Section 5.5 examines the assumptions that are required for 
statistical testing and considers the issue of independence. This is a critical assumption that is 
commonly required even within distribution-free testing approaches. Methods for assessing 
and coping with dependencies in hydrological data are discussed. Section 5.6 summarises 
choice of tests/test statistics. Section 5.7 considers interpretation of test results and how to 
determine the cause of change. The final section provides a summary. 

 
5.2 Setting the scene 
 
5.2.1 Some basics of statistical testing for change 
This section provides an overview of some of the main statistical concepts and terminology 
required for the statistical testing of change. For further details on statistical testing the reader 
should refer to a standard introductory statistical textbook (e.g. Chatfield, 1970) or to texts 
such as Hirsch et al. (1992) and Helsel & Hirsch (1992). 
 
Types of change 
Change in a series can occur in numerous ways: e.g. steadily (a trend), abruptly (a step- 
change) or in a more complex form. It may affect the mean, median, variance, autocorrelation 
or almost any other aspect of the data. 

The most widely used tests for change look for one of the following 
• Trend in the mean or median of a series 
• Step-change in the mean or median of a series. 
There are also some tests that look for a general change in distribution (Section 5.6). 

Trend and step change are special cases of a change in distribution. Tests for a change in 
distribution are generally not particularly powerful: Le. if trend is present it would be best 
detected by a test for trend. However, such tests may be useful as a general check for 
evidence of change. 

Testing for more complex types of change and for measures other than the 
mean/median generally requires use of advanced techniques such as Maximum Likelihood 
(see also Section 5.3). Typically these techniques can be difficult to apply and are beyond the 
scope of this report. 
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Hypotheses 
The starting point for a statistical test is to define the null and alternative hypotheses; these 
are statements that describe what the test is investigating. The null and alternative hypotheses 
are usually framed in terms of the types of change described above. For example, to test for 
trend in the mean of a series the null hypothesis (Ho) would be that there is no change in the 
mean of a series, and the alternative hypothesis (Hi) would be that the mean is either 
increasing or decreasing over time. To test for step-change in the mean of a series, the null 
hypothesis would again be that there is no change in the mean of the series, but the alternative 
hypothesis would be that the mean of the series has suddenly changed. 

The starting point for statistical testing is to assume that the null hypothesis is true, 
and then to check whether the observed data are consistent with this hypothesis. The null 
hypothesis is rejected if the data are not consistent. 

 
Test statistic 
The test statistic is a means of comparing the null and alternative hypotheses. It is just a 
numerical value that is calculated from the data series that is being tested. A good test 
statistic is designed so that it highlights the difference between the two hypotheses. A simple 
example of a test statistic is the linear regression gradient: this can be used to test for a trend 
in the mean. If there is no trend (the null hypothesis) then the regression gradient should have 
a value near to zero. If there is a large trend in the mean (the alternative hypothesis) then the 
value of the regression gradient would be very different from zero. More formally, to carry 
out a statistical test it is necessary to compare the observed test statistic with the expected 
distribution of the test statistic under the null hypothesis. The significance level of a test 
statistic expresses this concept more formally. 
 
Significance level 
The significance level is a means of measuring whether a test statistic is very different from 
values that would typically occur under the null hypothesis. Specifically, the significance 
level is the probability of a value as extreme as, or more extreme than the observed value, 
assuming “no change” (the null hypothesis). In other words, significance is the probability 
that a test detects trend when none is present. 

A possible interpretation of the significance level might be: 
• Significance level >10% - very little evidence against the null hypothesis (Ho) 
• 5 % to 10 % - possible evidence against H0 
• 1 % to 5 % - strong evidence against H0 
• below 1 % - very strong evidence against H0. 

Note that when reporting results the actual significance levels should normally be quoted 
(e.g. a significance level of 6.5 %). 

For many traditional statistical methods, significance levels can be looked up in 
reference tables or calculated from simple formulae, providing the required test assumptions 
apply. In general, the significance level can be found if the distribution of the test statistic 
under the null hypothesis (i.e., assuming the null hypothesis is true) is known or can be 
estimated. One case where this distribution is usually easy to determine is where the data are 
independent and normally distributed. Resampling methods provide an alternative, robust 
method of estimating the test statistic distribution in a general case. 

 
Power and errors 
There are two possible types of error that can occur in a test result. The first is that the null 
hypothesis is incorrectly rejected (type I error) - the significance level expresses the 
probability of this error. The second is that the null hypothesis is accepted when the 
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alternative hypothesis is true — type II error. A test which has low type II error probability is 
said to be powerful. In general more powerful tests are to be preferred. The power of the test 
is the probability of correctly detecting a trend when one is present. 
 
5.2.2 Cautionary words 
Poorly understood data gives poor results 
Statistical tests can be easily misapplied unless the data is thoroughly understood. A 
prerequisite before undertaking any formal statistical testing, is that the data should be quality 
controlled (Chapters 2, 3) and that an exploratory analysis (Chapter 4) should have been 
carried out. Statistical testing is a clear case where the “Garbage In Garbage Out” principle 
applies. 
 
Inappropriate test assumptions are dangerous 
If the assumptions made in a statistical test are not fulfilled by the data then test results can be 
meaningless. For example, many statistical tests are founded on an assumption that the data 
being tested are normally distributed. If the data follow a strongly non-normal distribution 
then the test results cannot be trusted. Another common assumption that can lead to highly 
misleading test results if ignored is that data values are independent. Many hydrological data 
sets either show autocorrelation (correlation from one time value to the next: also referred to 
as serial correlation or temporal correlation) or spatial correlation (correlation between sites) 
and therefore data values are not independent. It is very important to understand what 
restrictions apply to a particular statistical test, and in what situations it is valid to apply the 
test. 
 
A statistical test provides evidence not proof 
Statistical tests give results that are expressions of probability and not certainty. There is 
always the chance that the null hypothesis was true when a test result suggests it should be 
rejected. Similarly, if the null hypothesis is accepted, then this result says only that the 
available evidence does not contradict the null hypothesis, it is not proof that the null 
hypothesis is true. 
 
Each statistical test frames only a very specific question 
There is no universal test that can prove that a series is truly free of any change. For example, 
a test result that shows there is no conclusive evidence of a trend in the mean does not 
establish that the variance of the same series is unchanged, or that frequency and magnitude 
of the extremes are unchanged. 
 
Tests can be sign for the ‘wrong’ reason 
Even if a test result is significant it does not prove that the hypothesised change has taken 
place. For example, if there has been a marked step change in a data series then it is likely 
that a test for trend will give significant results — even though there is no trend. Often a test 
can only be correctly interpreted if it is examined alongside plots of the data, and with some 
understanding of possible causes of change. 
 
Sign is not the same as importance 
A test result may be highly significant (i.e. provide strong evidence against the null 
hypothesis) but the size of the observed change may be so small that it is of no importance. 
Conversely, an important level of change might not be significant because noise in the data 
means it cannot be statistically distinguished from the null hypothesis. In such cases it is 
important to recognise that acceptance of the null hypothesis does not mean very much, that 
further information is needed, and that the question may need to be reformulated. 
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5.2.3 The components of testing for change 
The main stages in statistical testing are 

• Decide what type of series/variable to test depending on the issues of interest (e.g. 
monthly averages, annual maxima, deseasonalized data etc) 

• Decide what types of change are of interest (trend/step-change) 
• Check out data assumptions (Section 5.5) 
• Select one or more tests/test statistics that are appropriate for each type of change 

(Using more than one is good practise: Section 5.6). 
• Evaluate significance levels, using resampling methods if needed (Section 5.3, 5.4) 
• Investigate and interpret results (Section 5.7). 

 
 
5.3 Approaches to testing for change 
 
5.3.1 Introduction 
There are very many statistical methods that can be used to look for various types of change 
in a data series. This section attempts to provide a brief overview. 

Two pieces of terminology are frequently used to distinguish types of test. The most 
useful of these is whether the test is distribution-free or distribution-dependent i.e. whether it 
is necessary to assume a particular distribution for the data when carrying out the test. Tests 
are also commonly referred to as either parametric or non-parametric. A test is said to be 
parametric if the change evaluated by the test can be specified in terms of one or more 
parameters. Linear regression is an example of a parametric test. Tests that are based on ranks 
(see below) are considered non-parametric because although they detect change, they do not 
quantify the size of change. Most non-parametric tests are also distribution-free tests. 

Historically many statistical tests either assumed normally distributed data and were 
distribution-dependent parametric tests, or used data ranks and were distribution-free non- 
parametric tests. Recent developments in statistics and in the availability of computing power 
have increased the range of possibilities. In particular it is now possible to construct 
parametric tests that are distribution-free. As will be seen below, almost any parametric 
distribution-dependent test can be adapted and used in a distribution-free way. 

For the purposes of this report, it is helpful to view the choice of a statistical test as 
being composed of two parts: 

• Selecting the test statistic 
• Selecting a method for determining the significance level of the test statistic. 

By viewing the process in these two parts it becomes possible to separate out the issue of how 
to select a test statistic from that of how to evaluate the significance level. The resampling 
methods presented in Section 5.4 provide a very flexible methodology that allow significance 
levels to be estimated for any choice of test statistic. This means that traditional statistical 
tests can be adapted for application to hydrological series by extracting the test statistic but 
using resampling methods to determine significance. 
 
5.3.2 Distribution-free approaches to statistical testing 
The majority of hydrological series are non-normally distributed and it therefore makes sense 
to use distribution-free testing methods. The following approaches are distribution-free: 
 
• Rank-based tests 

Rank based tests are tests that use the ranks of the data values (not the actual data values). 
A data point has rank r if it is the rth largest value in a data set. 
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There are a number of widely used and useful rank-based tests (see Section 5.6). Most 
rank-based tests assume that data are independent and identically distributed. Rank based 
tests have the advantage that they are robust and usually simple to use. They are usually 
less powerful than a parametric approach. 

 
• Tests using a normal scores transformation 

There are many tests for change that rely on assumptions of normality. Such tests are 
generally not suitable for direct use with hydrological data. However, they can be used if 
the data are first transformed. The normal scores transformation results in a data set that 
has a normal distribution. It is similar to using the ranks of a data series, but instead of 
replacing the data value by its rank, r, the data value is replaced by the typical value that 
the largest value from a sample of normal data would have (the rth normal score). Thus 
the normal scores value for the rth largest value in a series of length N is given by 
 
 rth

 normal score = Φ-1 (r – 0.5)/N (5.1) 
 

where Φ-1 is the inverse of the cumulative distribution function of the normal distribution. 
The advantages of using normal scores are that the original data need not follow a 

normal distribution, and the test is relatively robust to extreme values. Normal scores tests 
are likely to give slightly improved power for detection of change relative to equivalent 
rank-based tests. 

 
• Tests using resampling approaches 

Resampling methods are methods that use the data to determine the significance of a test 
statistic. They include methods such as permutation and bootstrapping. Resampling 
methods are very useful techniques for testing hydrological series and are described in 
detail in Section 5.4. Resampling methods can be applied to almost any test statistic and 
are an alternative way of obtaining significance levels. The advantages of resampling 
methods are that they are flexible and robust and that when used with parametric test 
statistics they allow the degree of change to be measured. Resampling tests are relatively 
powerful, e.g. for large samples, permutation tests can be shown to be as powerful as the 
most powerful parametric tests (Bickel & Van Zwet, 1978). Furthermore, resampling 
methods can be adapted to test data which are not independent (see Section 5.5). 
 

5.3.3 Other approaches to testing for change 
There are many other ways of testing for change. These are beyond the scope of this chapter, 
but are mentioned for completeness. One group of approaches requires the specification of a 
distributional form and of a model for change. These are therefore useful techniques for 
modelling complex types of change. They include 
 
• Maximum likelihood estimation 

Maximum likelihood estimation is a very powerful testing approach. However, 
formulating and solving the maximum likelihood equation(s) is often non-trivial and can 
require considerable expertise. 
 

• Bayesian methods 
Bayesian methods have a number of attractive features e.g. they provide a measure of the 
uncertainty of an estimate of change. However, they can be complex to apply and require 
distributional assumptions to be made (Lee, 1997). 
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• Time series methods 
Time series methods are potentially useful because they build in an autocorrelation 
structure to the data (i.e. a link between the current observation and successive 
observations; cf. Chatfield, 1996). However, most time series methods often require 
elimination of any trend component before an autocorrelation structure is modelled and 
they are often reliant on knowing the distribution of the data. 
 

Some other approaches that involve less complete modelling include the following: 
• Data generation methods 

Data generation methods work by producing a large number of artificial data series and 
using these to evaluate significance levels. Resampling is one type of data generation 
technique. An alternative advanced data generation method is the “phase randomisation”, 
technique which is described in Chapter 12. This is a method of generating data series 
that preserves the autocorrelation structure of the data. 
 

• Smoothing methods 
Smoothing methods include methods such as locally weighted regression (lowess). These 
techniques are often used informally as part of a visual data analysis (see also Section 
4.3). 
 

• Methods for looking at changes in variance and correlation (persistence) 
Most test procedures assume that the variance of the data remains constant. Some 
methods for testing for changes in variance and persistence are described in Chapter 9 and 
13. 
 

• Segmentation 
Segmentation is a Bayesian technique that looks for multiple step changes in a series. It is 
described in Chapter 10. 

 
 
5.4 Statistical testing by resampling methods 
 
Resampling methods such as permutation testing or the bootstrap are robust methods for 
estimating the significance level of a test statistic. A useful practical text on resampling 
methods and permutation tests is provided by Good (1993). Efron & Tibshirani (1998) and 
Davidson & Hinkley (1997) describe bootstrapping methods. Resampling methods are very 
useful for testing hydrological data because they require relatively few assumptions to be 
made about the data, yet they are also quite powerful tests. 
 
5.4.1 Understanding resampling 
The basic idea behind resampling methods is very straightforward. Consider testing a series 
for trend: a possible test is the regression gradient. If there is no trend in the data (the null 
hypothesis) then the order of the data values should make little difference. Thus shuffling 
(permuting) the data series should not change the gradient very much. Under a permutation 
approach the data are shuffled very many times. After each shuffle (permutation) the test 
statistic is recalculated. After very many permutations, the original test statistic is compared 
to the generated test statistic values. If the original test statistic is rather different from most 
of the generated values then this suggests that the ordering of the data affects the gradient and 
thus that there was trend. If the original test statistic lies somewhere in the middle of the 
generated values then it seems reasonable that the null hypothesis was correct (the order of 
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the values does not matter, so there is no evidence of trend). In other words, if an observer (or 
in this case, the statistical test) can distinguish between the original data and the resampled 
(permuted) data, then the observed data are judged not to satisfy the null hypothesis. 
 
5.4.2 Permutation and the bootstrap 
The bootstrap and permutation methods are two slightly different approaches to resampling 
the data. In permutation methods the data are reordered, each of the data points in the original 
data series appearing once in each resampled (generated) data series. In bootstrap methods, 
the original data series is sampled with replacement to give a new series with the same 
number of values as the original data. With this method, the generated series may contain 
more than one of some values in the original series and none of other values. In both cases, 
the generated series has the same distribution as the empirical (i.e., observed) distribution of 
the data. 

The bootstrap is generally but not always, less powerful than a permutation test 
(Good, 1993). However, bootstrap methods are often to be preferred where a test is looking 
for change in variance. Further, permutation tests cannot be applied with test statistics that do 
not change when the data are permuted, e.g. tests for which the test statistic is the mean or 
median. The tests given here can be used with either method. In general, bootstrap methods 
are more flexible than permutation methods and can be used in a wider range of 
circumstances. 

 
5.4.3 Determining significance level 
To determine the significance level, the data are resampled, by either permutation or 
bootstrapping, a large number of times, S. For each of these generated series, the test statistic, 
T, is calculated to give S artificial values of T. These are then ordered as 
 
 T1 ≤ T2 ≤ …≤Ts (5.2) 
 
If the original test statistic is T0 and 
 
 Tk ≤ T0 ≤Tk+1 (5.3) 
 
then the probability of the test statistic being less than or equal to T0 under the null hypothesis 
is approximately 

 
S
kp =  (5.4) 

p may also be estimated as 
 
 p = (k+0.5)/(S+1) (5.5) 
 
or even 
 
 p = (k+ 1)/(S+2) (5.6) 
 
 Assuming that large values of T indicate departure from the null hypothesis, the 
significance level for this test is then 
 
 100 * 2 min (p, 1-p)% (5.7) 
 
(assuming a two-sided test, i.e., a test in which the direction of change is assumed unknown). 
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5.4.4 Number of resamples 
The number of samples that need to be generated depends on the level of significance 
required and on the degree of change seen in the data. Typically around 100 to 2000 samples 
might be generated. The larger the number of resamples, the more accurate the estimate of 
significance. More resamples will be required to accurately determine significance levels of 
1% than significance levels of 10%. A simple approach to check whether the sample size is 
sufficient is to rerun a test a few times and check that the required percentiles of the 
generated test statistic values are not varying too much. 

For permutation testing, all permutations could, theoretically, be evaluated. However, 
typically there are too many to be evaluated (for a series of length n there are n! 
permutations) and a random selection of possible permutations is used instead. 

Note that if confidence intervals are required then sample sizes of 199, 999, 1999 etc. 
give exact confidence intervals (Faulkner & Jones, 1999 Appendix 2) e.g. for 199 samples, 
the 95% confidence interval is given by the 5 largest and smallest values; for 1999 samples, 
the 95% confidence interval is given by the 50 largest and smallest values. 
 
5.4.5 Resampling when data are not independent 
The above resamplmg methods are applicable only in the case where it can be assumed that 
the data are independent. For series with serial dependency, or series with seasonal structure, 
different techniques should be used. 

If data show serial correlation, or additional structure such as seasonality, then it is 
necessary that the generated series should replicate this structure. A straightforward means of 
achieving this is to permute, or bootstrap the data in blocks. For example, for a 40 year series 
of monthly values, it would be sensible to treat the data as consisting of 40 blocks of one 
year. Each year’s worth of data is left intact and is moved around together as a block — thus 
maintaining the seasonal and temporal dependencies within each year. The 40 blocks are then 
reordered many times. The resampled series would then preserve the original seasonality and 
serial correlation seen in the data. It is important that the size of the blocks should be sensibly 
selected. If there is seasonality then the block should contain an integral number of seasonal 
cycles. If there is autocorrelation then the block should be chosen so that data points one 
block apart are approximately independent. For the block-bootstrap there are also other more 
sophisticated methods of resampling such as the wild block bootstrap (Shao & Tu, 1995). 
Section 5.5 discusses issues related to dependence more generally and points out other 
alternative approaches. 

Note that block-bootstrap and block-permutation methods can be used with rank-
based tests, which, although distribution-free, would otherwise depend on assumptions of 
independence. 

Note also that blocking methods can be useful when there is spatial dependency in a 
set of multi-site data that is to be tested as a group. In this case, the usual choice of blocks 
would be to group data across all sites that occurred in the same time interval. Experience 
suggests that allowance for multi-site dependencies can be very important for estimated 
significance levels (e.g. Robson et al., 1998). 
 
5.4.6 Summary of method for resampling 
The basic method for carrying out a permutation or bootstrap test is as follows 

• Select one or more suitable test statistics (see Section 5.6) 
• Calculate the test statistic for the observed data, Resample the data series many times 

(e.g. 1000) to generate new data series and recalculate the test statistic for each of 
these series using blocking methods if appropriate 

• Estimate the significance levels using Section 5.4.3. 
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5.5 Understanding Test Assumptions 
 
5.5.1 Importance 
It is very important to check that test assumptions are approximately true when testing data 
for change. The violation of a test assumption can result in surprisingly inaccurate 
significance levels. For example, data that is assumed to be independent when it is not, could 
result in a significance level of 5% when in reality it should only be 25%. 
In general the assumptions that are made in a statistical test are linked to the method used to 
estimate significance levels, and not to the test statistic. Most test statistics can be tested 
using resampling approaches in order to minimise assumptions. 
 
5.5.2 Types of assumption 
Three types of assumption are commonly made when carrying out statistical tests: 
 
The form of the distribution (e.g. normally distributed) 
Not all tests make assumptions about the underlying distribution of the data. Tests that avoid 
assuming a distribution are called distribution-free (Section 5.3). 
 
Constancy of the distribution (i.e. all data points have an identical distribution) 
Most basic statistical tests assume, under the null hypothesis that the distribution of the data 
does not change. This assumption is violated if there are seasonal variations or any other 
cycles in the data, or if there is an alteration over time in the variance or any other feature of 
the data that is not part of the test. 

If there are seasonal cycles in the data, then the options are either to (1) deseasonalize 
the data, i.e. estimate the seasonal structure and remove this from the data series, or (2) to use 
a testing approach that allows for seasonality. Possible approaches that allow for seasonality 
include 

• use of block bootstrap and block permutation methods (see Section 5.4) 
• use of maximum likelihood / time series methods (see Section 5.3) 
• seasonal Kendall test (see Appendix C). 

Section 4.4 looks at methods of investigating and handling seasonality. 
If the variance or some other feature of the data is changing over time then the 

problem of testing for change becomes a much more complex one. Some specialist methods 
for tackling this type of problems are described in Chapters 9 and 13. 
 
Independence 
The assumption of independence is frequently violated by hydrological series and can have a 
very big effect on estimated significance levels. 

Data values can be said to be independent if they are completely unrelated to one 
another. For many hydrological series, this is not the case: e.g. knowing the flow in the river 
today, tells one quite a bit about what tomorrow’s flow is likely to be — so these data values 
are dependent. However, knowing today’s flow does not usually say very much about what 
the flow will be in a year’s time — thus these values are independent. When successive 
values show dependency this is known as autocorrelation, serial correlation or temporal 
dependency. 

When there are data from more than one site, assumptions of independence may also 
be violated because of spatial correlation (e.g. the flow is high in one catchment, it is also 
likely to be high in an adjacent catchment). This is also sometimes referred to as spatial 
dependency. 

The more frequent the data points the more likely it is that there will be important 
serial correlation in the data. As a rough guideline, daily hydrological series are usually 
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strongly correlated, annual series are often approximately independent, and monthly values 
are intermediate. 

Most common statistical tests do not allow for serial correlation in the data. If serial 
correlation is present then possible options are 

• Use block permutation or block bootstrap methods (Section 5.4) 
• Decrease the frequency of the data series (e.g., by calculating monthly or annual 

averages) 
• Use time series/phase randomisation/multivariate methods that build in serial 

correlation 
• For data with seasonality, consider the modified seasonal Kendall test (Appendix C). 

 
5.5.3 Methods for checking assumptions 
The principal method for assumption-checking is to use visual techniques such as are 
described in Section 4.5. They include 

• Histograms and normal probability plots — to examine distribution 
• Time series plots - to spot time dependent patterns or possibly changes in variance 
• Autocorrelation plots. 

Assumption checking may need to be carried out both prior to and after application of tests. 
For example, if a trend is detected, then the trend should be estimated and removed from the 
data, and the residuals checked for autocorrelation and for constancy of distribution. 

Use of visual methods for assumption checking will usually be sufficient, however 
formal tests are also available for checking some assumptions, e.g. tests for normality of data 
and tests for data independence (e.g. Bartlett’s test, Appendix F). 
 
 
5.6 Choosing tests and test statistics 
 
5.6.1 Introductory notes 
This section provides summaries of common tests for change. These are intended to be used 
as a source of test statistics for use within resampling methods. Further details on most of 
these tests are given in Appendices A-F. 
 
5.6.2 Choosing which test statistics to use 
Sections 5.6.5-5.6.7 list a number of common tests that can be used to test for change. For 
most studies, it is recommended that more than one of these tests should be used. Criteria to 
be aware of when selecting test statistics are 

• Type of change that is of interest 
• Power of test — more powerful tests are to be preferred. 
• Different types of test — some tests are very similar to one another and it is best to 

choose a selection of tests that are not too similar 
• Whether test is for a known or unknown change-point time (see Section 5.6.4). 

If a resampling technique is to be used, it is possible to either construct a test statistic to test 
for a particular type of change, or to extract a suitable test statistic from almost any other test 
for change. 
 
5.6.3 Choosing how to evaluate significance levels 
The tests given in Section 5.6.5 to 5.6.7 fall into two main groups 

• Rank-based tests - inherently distribution-free 
• Tests that assume a normal distribution. 
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Tests assuming a normal distribution are provided with the intention that sign levels 
should be evaluated using resampling methods. For this, the test statistic is calculated as 
usual, but the significance level is obtained by resampling, rather than by referring to 
tabulated values. An alternative would be to use the normal scores transformation (Section 
5.3). 

Rank-based tests can be applied directly to the data, providing the data meet 
assumptions of independence and constancy of distribution. 

If data violate independence assumptions, then it is recommended that block 
resampling methods are used to obtain significance levels (for both of the above types of 
test). Note that all tests assume that, under the null hypothesis, the distribution of data values 
does not change with either tune or space (Section 5.5.2). 

 
5.6.4 Testing when the time of change is unknown 
Tests for step-change and tests for a change in distribution work by dividing the data into two 
parts and comparing the parts. In the tests listed below, some assume a known time of change 
others assume an unknown time of change. 

In most cases, the time of change is unknown and tests assuming an unknown time of 
change are preferable. It is also possible to adapt a test that assumes a known time of change. 
A recommended method is to replace the original test statistic by two new test statistics. 
These are (1) the maximum value of the original test statistic when it is calculated for all 
possible change-point times, (2) the time at which this maximum occurs. These modified test 
statistics can then be evaluated using resampling methods. 

 
5.6.5 Tests for step change 
1. Median change point test / Pettitt’s test for change. This is a rank-based test for a change 
in the median of a series with the exact time of change unknown (Siegel & Castellan, 1988; 
Pettitt, 1979). The test is considered to be robust to changes in distributional form and 
powerful relative to tests such as the Wilcoxon-Mann-Whitney test (see below). 
 
2. Wilcoxon-Mann- Whitney test / Mann- Whitney test / Mann test / Rank-sum test. This test is 
a rank based test that looks for differences between two independent sample groups (Siegel & 
Castellan, 1988; WMO, 1988; Helsel & Hirsch, 1992). It is based on the Mann-Kendall test 
statistic - see below, but is calculated for subsets of the series in order to detect the point of 
change in the mean (Chiew & McMahon, 1993). In its basic form it assumes that the time of 
change is known. When the time of change is unknown, use of the median change-point test 
is recommended. 
 
3. Distribution-free CUSUM test. This is a rank-based test in which successive observations 
are compared with the median of the series (Chiew & McMahon, 1993; McGilchrist & 
Woodyer, 1975). The test statistic is the maximum cumulative sum (CUSUM) of the signs of 
the difference from the median (i.e. the CUSUM of a series of plus or minus ones) starting 
from the beginning of the series. 
 
4. The Kruskal-Wallis test. The Kruskal-Wallis test (Sneyers, 1975) is a rank-based test for 
equality of sub-period means. It can also be used to test for equality of sub-period variability. 
 
5. Cumulative deviations and other CUSUM tests. The cumulative deviation test (Buishand, 
1982) is based on the rescaled cumulative sum of the deviations from the mean. The test is 
relatively powerful in comparison with other tests (e.g. Worsley likelihood ratio test; 
Buishand, 1982) for a change-point that occurs towards the centre of the time series. The 
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basic test assumes normally distributed data. Other CUSUM based tests (using Bayesian and 
likelihood methods) are described in Buishand (1984). 
 
6. Student’s t-test. This is a standard parametric test for testing whether two samples have 
different means. In its basic form it assumes normally distributed data and a known change- 
point time. 
 
7. The Worsley likelihood ratio test. The Worsley likelihood ratio test (Worsley, 1979) is 
similar to Student’s t-test but is suitable for use when the change-point time is unknown. It 
assumes normality. 
 
5.6.6 Tests for trend 
1. Spearman’s rho. This is a rank-based test for correlation between two variables that can be 
used to test for a correlation between time and the data series (Siegel & Castellan, 1988).  
Spearman’s correlation is a rank-based version of the usual parametric measure of correlation 
(the Pearson product moment; Sprent, 1989). 
  
2. Kendall’s tau / Mann-Kendall test. This is another rank-based test which is similar to 
Spearman’s rho (same power and still based on ranks) but using a different measure of 
correlation which has no parametric analogue. 
 
3. Seasonal Kendall test. The seasonal Kendall test is a version of the Mann-Kendall test that 
allows for seasonality in the data (Hirsch et al., 1982). There is also a modified seasonal 
Kendall test that additionally allows for some autocorrelation in the data (Hirsch & Slack 
1984). 
 
4. Linear regression. The test statistic for linear regression is the regression gradient. This is 
one of the most common tests for trend and in its basic form assumes that data is normally 
distributed. 
 
5. Other robust regression tests. There are a number of robust methods for estimating trend in 
series. These could potentially be used as alternative measures of the change. For example, in 
least absolute deviation regression, the gradient is that which minimises the sums of the 
deviations of the points from the fitted line (Bloomfield & Steiger, 1983). Other robust means 
of estimating the rate of change include M-estimates of regression and trimmed regression 
(Rousseeuw & Leroy, 1987). 
 
5.6.7 Tests for a change in distribution 
1. Kolmogorov-Smirnov test. This test can be used to decide whether two samples have the 
same distribution. it is a distribution free approach. In its basic form it assumes that the time 
of change is known. The test statistic is based on the maximum difference between the 
distributions of the data before and after the change-point. 
 
2. Cramer-von-Mises test. This is a second distribution-free statistic which is similar to the 
Kolmogorov-Smirnov test, except that it uses a different way of measuring the difference 
between distributions. 
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5.7 Interpreting results 
 
5.7.1 Understanding test results 
No statistical test is perfect, even if all test assumptions are met. A 5% significance level 
means that we will make an error 5% of the time: i.e. if the null hypothesis was true then 1 in 
20 test results will have a significant (and incorrect) result. It is important to remember this 
when interpreting results. 

Often, there will be many test results to be examined. For example, a typical approach 
to testing for change is to apply a selection of tests e.g. a few tests for trend and a few tests 
for step-change. Interpretation of multiple test results can be complex. In some cases the 
results from these tests will generally be in agreement, but in other cases there will be 
differences between the tests. Some suggestions for interpretation of such results are 

• Use visualisation methods. Where there are multiple test results per site, it is easier to 
interpret tables of results if the tables show symbols rather than figures. For example, 
use of circles with circle size indicating significance level (3 to 5 classification bands 
are recommended) and circle colour indicating direction of change can be effective 
(Robson & Reed, 1999). If there are multiple sites, then plotting significance levels or 
size of change on a geographical map is helpful (see also Chapter 4) 

• Take care in interpreting significance levels. The presence of a single significant test 
result may only be weak evidence of change — even if this test is highly significant. 
If many of the tests are significant then this provides stronger evidence of change. 
However, if tests are very similar then multiple significant values are not an extra 
proof of change. 

• Examine the test results alongside graphs of the data, and with as much historical 
knowledge about the data as possible. For example, if both step-change and trend 
results are significant, and historical investigations reveal that a dam was built during 
the period, and this is consistent with the time series plot, then a reasonable 
conclusion is that the dam caused a step change. 

• Look out for patterns in the results that may indicate further structure e.g. regional 
patterns in trends. These may suggest that further investigation is needed. 

When many tests are applied to a single series it is usually only possible to draw 
qualitative conclusions (an overall significance level is not appropriate) - this is usually 
sufficient for most purposes. 

 
5.7.2 Interpreting change 
If test results suggest that there is a significant change in a data series, then it is important to 
try to understand the cause. Although the investigator may be interested in detecting climate 
change, there may be many other possible explanations. 
 
Causes of change 
Common causes of change include: 

• Changes directly caused by man (urbanisation, reservoirs, drainage systems, water 
abstraction, land-use change etc). 

• Natural catchment changes (e.g. changes in channel morphology) 
• Climate variability 
• Climate change 
• Problems linked to data. 
•  

Examples of problems linked to the data that can cause apparent change in a data series are: 
• Typographical errors 
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• Instruments malfunctioning (zero-drift, bias) 
• Change in measurement techniques/instrumentation/ instrument location 
• Change in accuracy of data / changes of data units 
• Changes in data conversions (e.g. altered rating equations). 

Data should always have been quality controlled before starting an analysis, but even 
with good quality control, some problems may be missed and it is helpful to be open minded 
at any stage of an analysis. 
 
Gathering additional information 
The best way to improve understanding of change is to gather as much information as 
possible. Examples include: 

• Historical information about changes in the catchment, land-use change etc. 
• Historical information about data collection methods etc. 
• Data from nearby sites — if data from other nearby sites show similar patterns then 

the cause is probably widespread (e.g. linked to climate, or to extensive land-use 
change). 

• Related variables — information on temperature and rainfall can help determine 
whether changes in flow can be explained by climatic factors. 

• Data that extends record lengths — a primary problem with many hydrological 
records is that they are too short. If related data can be obtained that extends to a 
longer period then this may be of assistance. 

 
Climate variability and climate change 
It is very important when interpreting test results to understand the difference between 
climate change and climate variability (see also Chapter 1: Appendix). Climate variability is 
the natural variation in the climate from one period to the next. Climate change refers to a 
long-term alteration in the climate. 

Climate variability appears to have a very marked effect on many hydrological series. 
This has two important effects. 

• Climate variability can cause apparent trend 
Climate variability can easily give rise to apparent trend when records are short - 
these are trends which would be expected to disappear once more data had been 
collected. Some examples of this can be seen in Figure 4.3. Because of climate 
variability, records of 30 years or less are almost certainly too short for detection of 
climate change. it is suggested that at least 50 years of record is necessary for climate 
change detection. 

• Climate variability obscures other changes 
Because climate variability is typically large, it can effectively obscure any 
underlying changes either due to climate change or to anthropogenic causes, such as 
urbanisation. 

Advice on choosing suitable series for study of climate change is given in Chapter 11. 
 
 
5.8 Summary 
 
This chapter gives recommendations for statistical analysis with the aim of providing a 
relatively straightforward approach to testing for change that is likely to yield reliable and 
useful results in a wide variety of situations. These recommendations are not the only 
approach to testing, but they should provide a good starting point in most cases. 
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It is recommended that hydrological data should be tested using distribution-free 
methods, i.e. using methods that do not rely on assumptions being made about the 
distribution of data. This is because hydrological data are often non-normal. Use of 
distribution-dependent methods is possible, but will generally require more advanced 
statistical treatment. 

The simplest distribution-free methods are rank based methods (Section 5.3). A 
related approach is to apply a normal scores transformation to the data. This transformation 
results in a series that is normally distributed and to which tests suitable for normal data can 
then be applied (Section 5.3). Both these approaches are rapid and straightforward, but they 
are only suitable if the data series are independent (Section 5.5). 

Resampling techniques, such as permutation and bootstrapping allow a very flexible 
approach to distribution-free testing. They are powerful tests and can be used to test a very 
wide variety of statistical hypotheses (Section 5.4). Resampling methods have the advantage 
that they provide a robust means of estimating significance levels for almost any test statistic 
without the need for distributional assumptions. Resampling techniques can also often be 
used even when the data are not independent, by making use of approaches such as block- 
permutation or the block-bootstrap. A variety of test statistics for use with resampling 
approaches are described in Section 5.6 and the Appendices. 

Care is always needed when interpreting test results. There are many causes of change 
other than climate change, and it is often the case that climate variability can obscure other 
possible changes in the data. Understanding the catchment and the data is a prerequisite for 
sensible interpretation of results. 
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Appendix A 
 

NOTES FOR APPENDICES B-E 
 
 

Appendices B-F contain details of various statistical test procedures. For each test, the text 
describes the type of test i.e., whether rank-based or making normal assumptions. It then 
gives details on the required test-statistic. Finally, details of how to determine significance 
levels under the stated test assumptions are given. Note that unless otherwise mentioned, all 
tests make the assumption that the data are independent and that the distribution of the data 
is constant. If the data meet all test assumptions then the method given under determining 
significance levels can be used to obtain significance levels. Otherwise a resampling method 
will usually be more appropriate. 

Where tests are applied using resampling methods then only the test statistic is used 
since significance levels are obtained by resampling. 
 
Notation List 

CS — cumulative sum 
df — number of degrees of freedom 
H0 — null hypothesis 
N — number of observations n number of runs 
R — rank 
r1— lag-one autocorrelation 
S, Sx, Sy — sample standard deviation 
Sxy — sample covariance 
sgn — sign function (for definition see eq. 5B.2) 
T— number of observations 
tj— number of ties of extent j 
tα tα/2 — critical value of test statistic 
Var — variance 
x, y, z — random variable 

zyx ,,  — sample mean 
Zm — sample median  
α — significance level A 
µ — mean value 
ρ — correlation coefficient 
ρs — sample correlation coefficient  
σ — standard deviation 
 

Other tests 
Further listings of tests for changes in hydrological data can be found in Cavadias (1992), 
WMO (1966), WMO (1988), Srikanthan et al. (1983) and Srikanthan & Stewart (1991). 
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Appendix B 
 

TESTS FOR STEP-CHANGE 
 
 

See also the explanatory notes in Appendix A. 
 
Median change point test / Pettitt test for a change: 
Type of test: rank-based and distribution-free for an unknown time of change. 
 
Test statistic: For a series of T observations, the test statistic is defined as: 
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and sgn denotes the sgn function (1 for positive, 0 for zero and -1 for negative arguments). 
 
Determining significance levels: For a significance level, α, the null hypothesis is rejected if 
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This is based on formulae for the probability of KT based on Bernoulli experiments. 
 
Comments: The change point time can be estimated as the time t when the maximum KT 
occurs. Modified versions of this test are also available. For example the test statistic 
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is an alternative indicator for the change point. For this test statistic significance levels should 
be estimated using resampling methods. 
 
 
Rank-sum test: 
The rank-sum test is also known as the Wilcoxon-Mann-Whitney or Mann-Whitney test. 
 
Type of test: This test is rank-based and distribution-free. It evaluates whether two 
independent data groups are different: the null hypothesis H is that the medians of the two 
groups are equal (under the assumption of identical distribution of the two populations). In 
the context of testing for step change, the time of change is assumed known and the series is 
divided into two groups (before and after the change point time) and these groups are 
compared. The method can be adapted for an unknown time of change as described in 
Section 5.6.4. 
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Test statistic: To compute the rank-sum test statistic (Hirsch et a!., 1992): 
(i)  Assign ranks to all the data, from 1 (smallest) to N(largest). In the case of ties (equal 

data values) use the average of ranks. 
(ii)  Split the data into two groups of size m and n. Compute a test statistic S as the sum of 

ranks of the n observations in the smaller group. 
(iii)Compute the theoretical mean and standard deviation of S under H for the entire 

sample: 
 
 µ = n (N+1) /2 (5B.5) 
 
 σ = [n m (N+1) / 12]1/2 (5B.6) 
 
The standardised form of the test statistic Zrs is computed as: 
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Determining sign levels: Zrs is approximately normally distributed and so significance levels 
can be obtained from normal probability tables. Thus, for a significance level of α, reject H0 
if |Zrs| > Z1- α/2 where Z1- α/2 is the 1- α/2 point of the standard normal probability distribution. 
 
Comments: A correction for data with ties is given in Hirsch et al. (1992) and Siegel & 
Castellan (1988). 
 
 
Distribution-free CUSUM test: 
Type of test: This is a rank-based test in which elements of the time series are compared with 
the median. it is distribution-free and for an unknown time of change (McGilchrist & 
Woodyer, 1975). 
 
Test statistic: The test statistic is the cumulative sum of the signs of the difference from the 
median (i.e. plus ones for values greater than the median and minus ones for values less than 
the median): 
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and Zm is the sample median. 
 
Determining significance levels: The test statistic is equivalent to the Kolmogorov-Smirnov 
test for the equality of distribution of the following two random variables: 
(i) times at which observations greater than the median occur 
(ii) times at which observations less than the median occur 
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and the standard algorithms for the Kolmogorov-Smirnov test can be used for determination 
of the percentage points of the test statistic (cf. Chiew & McMahon, 1993). 
 
Kruskal-Wallis test: 
Type of test: rank-based distribution-free test for equality of sub-periods. In the context of 
testing for step-change, it assumes a known change-point time. 
 
Test statistic: Let N be the number of data in the time series and let the series be sub-divided 
into m sub-periods of length nj (j = 1, 2, ..., m).  Let Rij be arank of the ith observation in the 
jth sub-period and 
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The test statistic is: 
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Determining significance levels: Under the null hypothesis of equal sub-period means, this 
statistic follows the Chi-square distribution with (m-1) degrees of freedom. 
 
Comments: In the case of tj ties in the jth sub-period the value of TS should be divided by: 
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The Kruskal-Wallis test can also be applied, using the same formulae, to detect differences in 
the variances of the sub-periods, if ranks of the quantities |Xi – X| are used where X is the 
mean for the complete period. See Sneyers (1975). 
 
Cumulative deviations test: 
Type of test: This test assumes that data are normally distributed. 
 
Test statistic: The test statistic is defined as: 
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and CSk is the cumulative sum 
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Determining significance levels: Critical values for this test were found by Buishand (1982). 
 
Student’s t-test: 
Type of test: This test assumes normally distributed data. The null hypothesis (H0) is that the 
means of two independent groups of data are equal. The alternative hypotheses are either that 
the means are non-equal (two-tailed test) or that one mean is higher than another (one-tailed 
test). In the context of step-change, the t-test corresponds to assuming a known time of 
change and testing whether the mean shifted at this point. 
 
Test statistic: If the variances of the two groups are assumed equal then the test statistic is 
given by: 
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where x  and y  are the sample means for two groups of data, where n and m denote the 
number of observations in each group, and S is the sample standard deviation (assumed equal 
for the two groups). 
 
Determining significance level: The test statistic follows a t-distribution. The rejection region 
is 
 
 t > tα for one-tailed test (5B.17) 
 
and 
 
 |t|>|tα/2| for two-tailed test (5B.18) 
 
The critical values of t; ta and tα/2| can be found in statistical textbooks (e.g., Mendenhall, 
1983), for (n+m-2) degrees of freedom. 
 
Comments: There is an alternative version of the t-test in which the two samples are not 
assumed to have equal variances. This test can be found in standard statistical texts. 
 
Worsley likelihood ratio test: 
Type of test: This test assumes that the data are normally distributed and that the change-point 
time is unknown. It tests for a step-change in a series. 
 
Test statistic: The test statistic is 
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and 
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and CSk is the cumulative sum, as defined for the cumulative deviations test above. 
 
Determining significance level: Critical values for different significance levels for this test 
have been derived by Worsley (1979). 
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Appendix C 
 

TESTS FOR TREND 
 
 

See also the explanatory notes in Appendix A. 
 
 
Spearmans rho: 
Type of test: Spearman’s p (rho) is a rank-based test which determines whether the correlation 
between two variables is significant. The null hypothesis is that there is no association 
between the rank pairs (Mendenhall, 1983). It can be tested in a two-tailed (unknown 
direction of change) or a one-tailed-mode (known direction of change). 
 
Test statistic: The test statistic is the correlation coefficient which is obtained in the same way 
as the usual sample correlation coefficient but using ranks: 
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and xi, x , yi, y  refer to ranks. 
If there are no ties in the data then there are simpler expressions that can be used to obtain rho 
(Mendenhall, 1983; Siegel & Castellan, 1988). 
 
Determining significance levels: For small values of N, the significance level of the test 
statistic can be looked up in tables (e.g., Mendenhall, 1983; Siegel & Castellan, 1988). For 
samples with more than 20 values, the quantity 1−Nρ  is approximately normally 
distributed (with mean of zero and variance of one). 
 
Kendall’s tau: 
Type of test: This is a distribution-free rank based test which is based on an alternative 
measure of correlation known as Kendall’s correlation coefficient or Kendall’s τ (tau). Like 
Spearman’s rho, it is robust to the effect of extreme values (i.e. to highly skewed hydrological 
data) and to deviations from a linear relationship. 
 
Test statistic: 
The test statistic is obtained as follows (Hirsch et al., 1982): 
(i)  Arrange the n data pairs (x1, y1), (x2, y2),…, (xn, yn), in order of increasing x-value. 
(ii)  Divide all n(n-1)/2 ordered pairs of yi values into P cases, where yi>yj(i>j) and M 

cases, where yi>yj(i>j). 
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(iii)  Define a test statistic S = P - M 
(iv)  If n>10, compute the standardized test statistic Z: 
 

   (5C.5) 
⎪
⎩

⎪
⎨

⎧

+

−
=

2/1

2/1

)(/)1(
0

)(/)1(

SVarS

SVarS
Z

0
0
0

<
=
>

S
S
S

 
where 
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Determining significance levels: The standardised test statistic Z is approximately normally 
distributed. Thus, the null hypothesis is rejected at significance level α if 
 
 2/1 α−> ZZ  (5C.7) 
 
where Z1-α/2 is the value of the standard normal distribution with the probability of 
exceedance of α/2. 
 
Comments: The Kendall’s correlation test lends itself well to applications for censored data. 
For tied data the expression for variance takes the form 
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where ti is the number of ties of extent i. 
 
For example, if the time series of interest is: { 5, 3, 6, 7, 7, 3, 2, 3, 9, 6 }. Then the ti values 
are: 
 ti = 3 as there are three untied elements in the series (2, 5, 9); 
 t2 = 2 as there are two sixes and two sevens, i.e. two ties of extent two in the series; 

t3 = 1 as there are three threes, i.e. one tie of extent three in the series. 
 

The Kendall’s correlation coefficient, a measure of the strength of the correlation, can be 
calculated as 
 
 )]1()/[2 −= nnSτ  (5C.9) 
 
It attains values from the interval (-l,+l), where the sign indicates the slope and the absolute 
value indicates the strength of the relationship. 
 
Seasonal-Kendall test and modified Seasonal-Kendall test: 
Type of test: The seasonal Kendall test is a rank-based distribution-free test for trend in data 
with seasonality. It was introduced by Hirsch et al. (1982) for identifying and quantifying 
changes in water quality data. It is based on Kendall’s tau and combines the Kendall’s tau 
measures for each of the months. It can be adapted to apply to non-monthly seasonal data (eg. 
quarters of the year). 

73 



Test statistic: Let the complete sample X be subdivided into sub-samples X1 through X12 (one 
for each month), where each subsample Xi contains the ni annual values from month i 
 
 X = (X1, X2, …, X12) 
 Xi = (Xi1, Xi2, …, Xini) (5C.10) 
 
The null hypothesis H0 for the seasonal Kendall test is that X is a sample of independent 
random variables and that Xi is a subsample of independent, and identically distributed 
random variables. 
 
The test statistic Si is defined: 
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where ti the extent of a given tie in month i. See Hirsch et al. (1982) for further details. 
 
Determining significance levels: The above test statistic is approximately normally 
distributed. 
 
Comments: The modified seasonal Kendall test uses a more complex measure of the variance 
of Si which builds in an allowance for autocorrelation. See Hirsch & Slack (1984) for further 
details. The test is suitable for seasonal data with a moderate level of autocorrelation. 
 
The gradient of trend can be estimated using the seasonal Kendall slope estimator (Hirsch et 
al., 1982). 
 
 
Linear Regression: 
Type of test: This is a parametric test that assumes normally distributed data. It is used here to 
test for linear trend by e the linear relationship between time and the variable of interest. 
 
Test statistic: The regression gradient is estimated by: 
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while 
 
 tbza ˆˆ −=  (5C.15) 
 
The required test statistic is 
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Determining significance level: This test statistic follows a Student distribution with T-2 
degrees of freedom under the null hypothesis. The application of this test assumes that the 
errors (deviations from the trend) are independent and follow the same normal distribution 
with 0 mean. 
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Appendix D 
 

TESTS FOR CHANGES IN DISTRIBUTION 
 
 

See also the explanatory notes in Appendix A. 
 
 
Kolmogorov-Smirnov test: 
Type of test: This is a distribution-free test for a general change in distribution. The test 
merely states that the two distributions are different — it does not specify whether the change 
is an increase or decrease in the mean or due to a change in the variance or extremes. In the 
context of testing for change, the data is divided into two, assuming a known change-point 
time, and the test is used to compare the two parts. 
 
Test statistic: Suppose that the investigated time series changed at time m for a series of N 
observations. The test statistic is: 
 
 ( ) ( ) ( )||max 21 xFxFmNmD

x
−−=  (5D.l) 

 
where  F1(x) and F2(x)  are the empirical distributions for the two parts of the data, i.e. 
 F1(x) = (No values in sample 1≤x) /m 
and  F2(x) = (No values in sample 2≤x) / (N-rm) 
 
Determining significance levels: The critical values for D can either be taken from textbooks, 
or assessed directly using re-sampling. 
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Appendix E 
 

TESTS FOR RANDOMNESS 
 
 

See also explanatory notes in Appendix A. 
 
 
Runs test: 
Type of test: This is a rank-based test for randomness. 
 
Test statistic: Runs are defined as a set of consecutive observations above or below the 
median (WMO, 1988). If the data are randomly distributed then the expectation and the 
variance of the number of runs are, respectively: 
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where n is the number of data in the series and nr is the number of runs. The following test 
statistic can be used: 
 
 [ ]{ } [ ]{ } 2/1/ rrr nVarnEn −  (5E.3) 
 
Determining significance levels: The above test statistic is approximately normally 
distributed, N(0,l). 
 
Kendall’s turning point test: 
Type of test: This is a rank-based test for randomness of a data series. 
 
Test statistic: The idea of this test is to calculate the number of turning points in a series. This 
is done by defining a new series I: 
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The test statistic is derived from: 
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For large T values and an independent stationary time series (without change) Q follows a 
normal distribution with the expectation: 
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and the variance: 
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The series can thus be tested by calculating the test statistic 
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Determining significance levels:  C has an approximately normal N(0,1) distribution and 
significance levels can be found in the usual way. 
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Appendix F 
 

TESTS FOR INDEPENDENCE 
 
 

See also the explanatory notes in Appendix A. 
 
 
Bartlett’s test for autocorrelation: 
Type of test: This is a parametric test which assumes the data to follow a normal distribution. 
 
Test statistic: The independence of the series is checked using the lag-i autocorrelation of the 
series. 
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The null hypothesis is that the autocorrelation is zero — meaning that the subsequent data in 
the time series are independent. The corresponding test statistic is: 
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Where df is the degrees of freedom — estimated as: 
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Determining significance levels: The test statistic S follows a Student distribution with T-3 
degrees of freedom. Thus the statistical testing is carried out by calculating S and comparing 
its value with the critical value of the Student distribution. This means that the hypothesis of 

independence is rejected if:  
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distribution with df  degrees of freedom. 
 
 
Von Neumann ratio test: 
Type of test. This is a non-parametric test for independence. It should only be applied for time 
series of at least 30 points. The null hypothesis is that the series consists of independent 
elements. 
 
Test statistic: The basis for the test statistic is R: 
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with z  being the mean of the series z. 
 
This R follows a normal distribution with expectation: 
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and a variance: 
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In order to test the independence the standardised test statistic C is calculated: 
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Determining significance levels: The test statistic C has a normal distribution. Thus if 
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then the hypothesis that the series consists of independent observations is rejected. 
 
Example of testing for independence 
Annual discharges of the Neckar river are considered. The following table shows the annual 
mean discharges at the Rottweil gauge in m3/s. 
 

Year Discharge Year Discharge 
61 4.17 76 2.77 
62 4.28 77 5.83 
63 3.88 78 6.59 
64 3.20 79 5.52 
65 7.98 80 5.18 
66 6.13 81 5.80 
67 4.49 82 6.63 
68 7.13 83 6.11 
69 5.51 84 4.59 
70 7.63 85 3.56 
71 2.48 86 7.29 
72 3.51 87 6.62 
73 4.47 88 7.31 
74 4.37 89 3.36 
75 4.55 90 4.51 
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Assuming that the annual discharges follow a normal distribution, the Bartlett test for the 
autocorrelation was applied. The estimated lag-1 autocorrelation is 0.081.  From this the 
number of degrees of freedom df is: 
 

 65.26
081.0081.01
081.0081.01

)330( =
⋅+
⋅−

−=fd  

 
Thus the test statistic S is: 
 

 420.0
081.0081.01

65.26081.0
=

⋅−
=S  

 
A significance level of 5 % is chosen — this means that the critical value of the Student 
distribution (available as tables in standard statistical texts) is 2.06. As S does not exceed the 
critical value the hypothesis that the data are independent cannot be rejected. 

In the case one cannot be sure about the distribution of the individual values the non- 
parametric von Neumann test can be applied. The test statistic R is: 

 
R=1.880 

 
From this the standardised variable C is calculated as: 
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The critical value of the standard normal distribution for the significance level of 5% is 1.96. 
As the absolute value of the calculated C does not exceed this value the hypothesis of 
independence cannot be rejected by this test. 
 

82 



 

83 



 
 

 
 
 
 
 

PART II 
 
 

SPECIAL TOPICS 

84 



 

85 



CHAPTER 6 
 

DETECTING CHANGES IN EXTREMES 
 

Alice Robson & Francis Chiew 
 
 

6.1 Introduction 
 
6.1.1 What is an extreme event? 
An extreme event is simply an event that is uncommon or rare. Testing for trend or other non 
stationarity in extremes is particularly difficult because there is typically only limited data 
available. The hydrological extremes are droughts and floods and these are discussed below. 
Similar principles apply to other types of extremes, e.g. temperature, wind speed. 
 
6.1.2 Importance of changes in extremes 
Knowledge about changes in extreme events is needed because of the devastating 
consequences associated with very extreme events. Increases in flooding, or increased 
thought severity, generally has a greater impact than a shift in average conditions. Climate 
change could potentially impact extreme events, but currently there is little evidence over 
whether such effects are occurring. Unless very long hydrological data sets become available, 
it will remain difficult to determine if climate change is affecting extremes. 
 
6.1.3 Is there evidence that extremes are changing due to climate 
Recent studies examining trends hi extremes of flows have not generally found conclusive 
evidence of change due to climate (e.g. Lins, 1999; Robson et al., 1997). It must be 
remembered that this means that we cannot prove that change is taking place. It is possible 
that changes are occurring but that we do not yet have sufficient data for it to be detectable. 
The picture is somewhat different for studies of rainfall.  Here there are a number of studies 
that suggest that rainfall has become more variable, and that rainfall intensity and the 
frequency of high intensity rainfall has increased in some areas (see Section 5.3 Nicholls et 
al, 1996 for a summary). 
 
6.2 Choosing a suitable data series 
A critical stage in testing for trend or step change is to obtain a suitable data series. Because 
extremes are infrequent, it is generally necessary to construct a data series that specifically 
picks out extremes. For example, in the case of floods, it would be inappropriate to use a 
daily or hourly flow series because the data set would be dominated by values that are normal 
flows. Instead, it is usual to use a dataset that contains only peak flows. The following two 
sections describe the most common types of data series used for studying extreme events. 
Ideally we should look at more than one type of data when testing for non-stationarity. Each 
type of data provides a different perspective on how extremes may be changing 
 
6.2.1 Annual maxima and minima series 
An annual maxima series is obtained by taking the largest value in each year or season of 
interest. For example, the annual maximum flood series is an annual series of the largest flow 
value for each year. Annual maxima and minima series are generally straight forward to 
obtain and are a useful and practical way of summarising extremes hi data series. However, 
they may exclude information on some extremes (e.g. if more than one extreme event occurs 
within a year), or may contain values that do not relate to extreme events (e.g. if no extreme 
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event occurs within a year). In some instances, annual maxima values may be even zero, e.g. 
if a stream is dry for a year. 

The annual maxima or minima series should be derived from an appropriate 
underlying data series. If extremes extend over long periods (e.g. droughts and low flows), a 
daily flow series is likely to be adequate. If an extreme event happens rapidly (e.g. a flood 
peak) then the annual maxima series will ideally be derived from instantaneous or hourly 
maximum flows; the extreme event could be missed with daily data. 

 
6.2.2 Peaks-over-threshold (POT) or partial duration series 
A peak-over-threshold (POT) series, also called a partial duration series (PDS), contains all 
events larger than a threshold value. A POT series has advantages over annual maxima series 
in that all major events are included (not just the largest in a year) and all data points in the 
POT series are extreme events (Stedinger et al., 1993). A POT series provides a much fuller 
description of the nature of extreme events and is likely to result in a greater ability to detect 
change. Furthermore, POT series can be used to examine whether there is a change in either 
the magnitude or frequency of extreme events 

In practice, the POT or partial duration series can be more difficult to obtain than 
annual maxima (see below) and care is often needed in analysing such series because they are 
irregular (there may be many events in one year and none in another). 

To obtain a POT or PDS series, it is necessary to  
(1) Identify a suitable threshold 
The threshold should be such that the average number of events per year is within reasonable 
bounds. Often the threshold is selected to give a fixed average number of events per year. It is 
also possible, but less common, to select a threshold that corresponds top criteria (e.g. bank 
level). 
(2) Determine whether events are independent 
It is important that POT events are independent of one another (there should not be multiple 
peaks corresponding to the same event). Judging independence can be complex and requires 
suitable criteria to be available. If there are multiple peaks corresponding to the same event 
then usually only the largest peak is retained in the POT series. Judging independence is 
complex and depends on local circumstances and the type of data (e.g. see below). 
 
 
6.3 Data series for floods 
 
For floods, use of both annual maxima and POT data sets is suggested. For POT data it is 
recommended that more than one threshold be used when analysing the data. For example, 
testing a POT series containing an average of 1 event/year provides information about 
changes in large floods, and testing data containing three events/year also gives knowledge 
about changes in moderate events. Testing a variety of series gives a better picture of what is 
occurring. 

For POT data it is necessary to define independence rules, to ensure that flood peaks 
are from separate events. An approximately independent series can sometimes be obtained 
using simple hydrological criteria (e.g. see Bayliss & Jones, 1993) but can also be derived 
using more sophisticated statistical approaches (e.g. Davison & Smith, 1990; Dixon & Tawn, 
1995). 
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6.4 Data series for droughts 
 
Testing for trends in drought is non-trivial because it is often the duration of the drought that 
is critical (in contrast to floods where flood magnitude is usually more important). 
Furthermore, severe droughts may span a number of years, which means that much longer 
data sets are required for trend/step-change detection to be useful. 
There are various definitions of drought. Hydrological drought typically refers to periods of 
below normal streamflow or depleted reservoir storage (Beran & Rodier, 1985). The annual 
series of seven-day low-flow (lowest discharge over seven consecutive days) is commonly 
used as a low- flow series. 

Data series for “droughts” may also be obtained from a flow series by considering 
periods when the flow is below a certain threshold. The truncation level can be standardised 
by defining it using a certain percentile of the flow duration curve - this method of 
standardisation gives the same average number of days having drought at each site 
(Zelenhasic & Salvai, 1987). Trends can then be tested on the annual and/or partial series of 
drought duration (number of days flow is below threshold), drought severity (flow volume 
below the threshold) and the number of times in a year that flow is below the threshold. 
However, like the POT and PDS series for floods, it is difficult to judge whether consecutive 
droughts are independent. 

This can be overcome by using a deficit series, defined as the local minimum storage 
in a semi-infinite reservoir between spills (Pegram et al., 1980). The flow series is used in a 
storage behaviour analysis (McMahon & Mein, 1978) which simulates storage fluctuations in 
a reservoir subject to a given sequence of inflow (the flow series) and a given draft (a 
constant value, say 70% of the mean inflow, can be used here to represent water use, 
evaporation and other reservoir losses). In the analysis, the next day’s storage is calculated as 
the present storage plus inflow less draft. The deficit series is obtained by having a finite 
reservoir capacity and not allowing the reservoir to empty (the capacity can be set as zero 
datum - the storage is therefore always negative). The deficits (minimum storage between 
spills) in the series are statistically independent because they are the realisations of a renewal 
process (Pegram et al, 1980). 

Meteorological drought and agricultural drought are two other commonly used 
drought definitions. Meteorological drought is defined as periods during which the actual 
moisture supply cumulatively falls short of the climatically appropriate moisture supply, and 
agricultural drought is defined as periods when the soil moisture is inadequate to meet 
evapotranspirative demands. The Palmer Drought Severity Index (PDSI) is commonly used 
to reflect a prolonged and abnormal moisture deficiency (Palmer, 1965). The PDSI is 
computed as a function of the difference, accumulated through time, of the actual rainfall and 
the CAFEC rainfall (climatically appropriate for existing conditions of evaporation and other 
components of the water balance). It ranges from -4 (extreme drought), 0 (normal condition) 
to +4 (extreme wet period). A continuous PDSI series can be obtained by analysing either the 
weekly or monthly water balance. 

 
 

6.5 Data series for seasonal data 
 
If a data series is strongly seasonal or if changes relating to a particular season are important, 
then it may be appropriate to consider a seasonal extreme series. For this, the annual maxima 
and POTIPDS series are derived using just the data for the required season. 
 
 

88 



6.6 Guidelines for testing for non-stationarity 
 
The various series described here can be tested for trends and/or step-change using the 
permutation and bootstrap methods detailed in Chapter 5. 
 
6.7 Discussion 
 
Because extreme events are rare it is very important to use long records, more so than with 
other hydrological data. This is particularly true for droughts because they may extend to 
periods of a year or more. Detection of effects due to climate change is likely to require much 
longer data sets than detection of effects with a clear anthropogenic cause. 

Whenever non-stationarity is detected it is very important to try and establish the 
likely cause. It usually is helpful to examine other related hydrological series. For example, if 
trend is seen on a catchment that has experienced land-use change, ex2mmlng a rainfall series 
can provide information about whether climatic conditions have been steady across the period 
of record. 

A further way of g insights into the nature and causes of non-stationarity is to look at 
extremes from a regional perspective (Chapter 8, also Robson et al., 1997). Use of the 
graphical approaches described in Chapter 4 should be considered. 
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CHAPTER 7 
 

TESTS FOR CHANGES IN FLOW REGIMES 
 

Hege Hisdal 
 

 
7.1 Introduction 
 
A number of factors such as increased demands for water in general and requirements for 
increased levels of service (e.g. reliability of supply) have put focus on the quantity and 
quality of water resources. Flow regimes describe the average seasonal pattern of river flow. 
This pattern is important to water resource management and biological cycles in a river. 
Changes in regime types could have serious negative and positive consequences for a number 
of water management issues including drinking water supply, hydropower production, 
irrigation, reservoir design and management, river pollution and ecological aspects. It should 
be stressed that a redistribution of water throughout the year might occur without influencing 
the annual discharge. 

An example of a positive consequence of changed distribution of runoff during the 
year in the Nordic countries is described in S (1998). An expected climate change leading to 
increased winter runoff and reduced spring floods will allow more reservoir capacity to be 
used for attenuation, thus reducing spillage and increasing total production. It is important to 
highlight however, that even though climate changes have the potential to affect water 
resources availability; studies have shown that considerable differences might arise even 
within a narrow range of feasible future climates (Arnell, 1992 a). 

Hydrological regimes reflect climatic and physiographic conditions of a catchment. A 
changed regime would therefore indicate natural or man-induced changes in the climate or 
the environment of a catchment. Hydrological time series describing regimes could be based 
on seasonal mean flow or monthly mean flow. The timing of a seasonal event is an important 
characteristic of a regime. 

The regularity of seasonal patterns is another important aspect in this context because 
operational water management relies upon a certain stability of a river flow regime. The 
average pattern can be stable, demonstrating the same river flow from year to year, or 
unstable with alternating seasonal patterns. 

This chapter includes a short description of flow regime classifications. Several 
variables characterise river flow regimes and could be tested for changes. Examples of 
variables and tests are listed. 

 
 
7.2 Flow regime classification 
 
A river flow regime describes the average seasonal behaviour of flow. Several classifications 
exist some covering the whole world others more locally adapted. Two examples of 
traditional classifications are due to Lvovich (1938) and Pardé (1955) both qualitative based 
on genetic source (e.g. snowmelt, rainfall) and flow distribution within the year. A 
classification according to Pardé is carried out for a number of catchments in Australia 
(Ward, 1984). The major drawbacks of these traditional classifications are their time-
consuming nature and their dependence on subjective experience and judgement. 

When large amounts of data both in time and space are to be classified, an automatic, 
computer-adapted method is necessary. An example of a global regime classification is given 
by Haines et al. (1988). A Scandinavian Working Group on Flow Regimes developed a 
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robust definition of flow regimes for Scandinavia (Gottschalk et al., 1979). The classification 
distinguishes between three main sources of flow: water from snowmelt, rain and mixed and 
defines the timing of maximum and minimum mean monthly flow. The principles of this 
classification, given in Table 7.1, have been used as a basis for the first computerised flow 
regime classification of Scandinavia (Krasovskaia & Gottschalk, 1992). 

 
Table 7.1. Principles of Scandinavian flow regime classification (from Krasovskaia et al., 
1994). 
High water 
H1 
Dominant snowmelt high 
water 

H2 
Transition to secondary high 
water 

H3 
Dominant rain high water 

Low water 
L1 
Dominant low water in 
winter 

L2 
Transition zone, two low 
water periods in different 
seasons 

L3 
Dominant summer low water 

 
Later the same scheme was generalised and adapted to river flow series in western Europe 
(Krasovskaia et al., 1994). A total of 13 regime types were defined, of which 4 were 
transitive. Examples of the most common European flow regimes according to this 
classification are found in Fig. 7.1. Flow regime classifications are traditionally presented by 
placing the monthly hydrograph on a geographical map, showing the location of the stations. 
With a large number of stations this is problematic. A solution is to use some form of spatial 
interpolation and map the regimes on a gridded basis. Examples of gridded maps based on the 
13 regimes types discussed above can be found in Arnell et al. (1993). 

A river flow regime classification could be used as a basis for defining hydrological 
regions (see Chapter 8 on regionalisation). 
 
7.3 Variables describing river flow regimes 
 
Important in studies of changes in river flow regimes is the data requirement (see Chapter 3 
on data). The type of hydrological variable to be analysed will be limited by the available 
temporal resolution of the time series. River flow regimes often cover large regions and 
changes in regimes might form regional patterns. Therefore a broad spatial coverage of data 
series is important. In the context of assessing climate variability and change and possible 
impacts on river flow regimes, long time series of observational data are needed. These 
aspects have to be focused when choosing variables to be analysed. 

Several variables are used to describe river flow regimes and changes in regimes 
could be found analysing different hydrological parameters as: 

  seasonal mean flow 
  monthly mean flow 
  timing of seasonal events as: 
• start of snowmelt 
• snowmelt flood-peak 
• maximum flow 
• freezing of rivers 
• ice break up 
• minimum flow 

  stability of regimes 
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Fig.7.1. Examples of the most common European flow regimes (Krasovskaia et al., 1994). 
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The stability of a certain river flow regime, i.e. the regularity of seasonal patterns is an 
important aspect in this context, and requires a further explanation. The average pattern can 
be stable, demonstrating the same variation in river flow from year to year, or unstable with 
alternating seasonal patterns. A regime type defined using long-term monthly mean flows 
might not coincide with the regime types obtained classifying each year separately. This 
means that a regime classification will depend on the record length. A study of hydrological 
characteristics over time for Europe (Krasovskaia et al., 1993) concluded that the type of 
flow regime in a catchment may vary over time, particularly in rain-dominated catchments, 
and that the stability of a regime can be seen as a characteristic of a particular regime type. 

Changes in river flow regimes will therefore be reflected in a changed stability. 
Through the concept of entropy (Krasovskaia, 1995) it is possible to quantify this change. 
The calculation of the entropy is based on a predefined regime classification. A short 
summary based on Krasovskaia & Gottschalk (1997) is given below. 

When calculating the instability index, an appearance of flow maxima/minima within 
one of n respective discriminating periods is regarded as coming from events E ..., E which 
form a complete system in the sense that it is certain that exactly one of them will occur. 
Thus, if their probabilities are p1, …, pn, they add up to one: 

 

 pi = P(Ei) i = 1, …, n where  (7.1) ∑
=

=
n

i
ip

1

1

 
The stability of maxima and minima of a particular river flow regime, respectively, is 
characterised by means of entropy of the experiment: 
 

  (7.2) ∑
=

−=
n

i
ii pnpH

1

)(1

 
The higher the entropy value, the smaller is the probability of observing the flow 

regime pattern assigned to a series during each individual year. 
Using the property of additivity of entropy, an instability index of a flow regime type 

HR is calculated as a sum of the entropy of maxima and minima 
 

 H = HMAX + HMIN (7.3) 
 

Comparison of the stability of different flow regime types becomes easier when a 
relative instability index is used (e.g. as a percentage of the maximum possible for this 
regime type). The entropy reaches its maximum value when all possible events, E1,..., En, are 
equally probable, p1,=...=pn=1/n. The lower the value of the index the more stable is the 
regime type. 

 
7.4 Detection of changes 
 
Changes in hydrological regimes may be studied analysing historical data. Several studies of 
mean seasonal or monthly discharge exist. Stolte & Herrington (1984) give an example where 
explanations for changes in a Canadian river flow regime are sought in precipitation and 
evapotranspiration changes and shifts in land use and agricultural practices. Both parametric 
and non-parametric tests were used to detect changes in monthly flow. There are several 
studies of long river flow series from the Nordic countries. An example including seasonal 
patterns, is the extensive mapping of the behaviour of river flow in time and space given in 
Hisdal et al. (1995). Arnell et al. (1990) describe the impact of climate variability and change 
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on river flow regimes in the UK and similar studies can be found for other countries or single 
river basins (e.g. Wateren-de Hoog, 1995). 

Another approach is the modelling of river flow under the assumption of changes or 
fluctuations in the climate. Nemec & Schaake (1982) utilised a deterministic conceptual 
rainfall-runoff model to estimate the sensitivity of water resources systems to climate 
variations. Other examples of impact assessments using rainfall-runoff models are given in 
Arnell (1992 b), Krasovskaia & S (1997) and S (1998). The latter describes expected changes 
in runoff regimes in different altitude zones (mountain, lowland etc.) due to alternative future 
global change scenarios and the resulting impacts on the Nordic system for hydroelectric 
power production. 

 
Fig. 7.2. Smoothed seasonal mean regional discharge values from north-western Norway. 
The values are given as a percentage deviation from the long-term mean value. 
 

 
Fig. 7.3. Trend in seasonality for POT (station Spey, UK). The water year in shown on the x-
axis whilst the angle representing the season is shown on the y-axis, confidence internals for 
the fitted trends shown in dotted lines. Source: Robson & Reed (1996). 
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In general, the exploratory/visual analyses described in Chapter 4 and the tests for 
changes recommended in Chapter 5, can be used to detect changes in river flow regimes. Fig. 
7.2 shows an example of smoothed mean seasonal flow in north-western Norway (Hisdal et 
al., 1995). 

An important supplement is to regard the timing of seasonal events as circular data 
(especially recommended if the event occurs around the turn of the year). Different statistical 
methods for displaying and testing for changes in such data are described in Fisher (1993). 

A trend test for circular data is applied to detect changes in the timing of UK floods 
(Robson et al., 1996). The timing of the flood peak is represented by an angle ranging 
between 0 and 2π. The angle representing the mean day of occurrence, µ, is modelled as a 
function of time as: 
 µt = µ +2tan-1(βt) (7.4) 
where µ=2π(DayNo+0.5)/(days in year), t is the year, β represents the trend component and 
tan-1 is link function with the property of mapping the real line to (-π, π). Full details of the 
test may be found in Fisher (1993). An example of a plot showing trends in the timing of UK 
peak over threshold floods (POT) is shown in Fig. 7.3. 

The sensitivity of the stability of river flow regimes to small fluctuations in 
temperature using historical temperature series for Scandinavia is described in Krasovskaia 
(1996) and Krasovskaia & Gottschalk (1997). 

The use of statistical tests to detect changes in entropy has not yet been utilised. A 
topic for further research would therefore be the applicability of different statistical tests to 
detect temporal and spatial changes in entropy. 
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CHAPTER 8 
 

SPATIAL/REGIONAL TRENDS 
 

Harry F. Lins 
 

The assessment of regional trends in hydrological conditions can be approached from two 
distinct perspectives, one inherently univariate and one multivariate. The univariate approach 
involves testing for trends at individual sites and then grouping or regionalizing sites having 
similar test results. The multivariate approach differs in that regions are first identified from 
the hydrological time series collected at multiple sites, and a new derived time series for each 
region is then tested for trends. 

The former is more applicable in instances where the analyst wants to preserve as 
much of the temporal information at a single site as possible, while also identifying adjacent 
sites exhibiting similar behavior. A. common area where such an application is seen is in 
engineering design analysis. The latter is more useful in applications where the goal is to 
emphasize the temporal behavior of coherent regional patterns of variability; as might be the 
case in a climatic or hydroclimatic analysis. For any given set of hydrological records, 
however, the basic conclusions drawn from either approach should be the same. 

Moreover, consideration of trends in a regional framework necessarily involves a 
geographical perspective. The plotting of trend results on a map is, therefore, essential to 
communicating effectively the pattern or dimensions of a regional trend. How the results are 
mapped must also be considered. If the density of the observing network is low, then it may 
be most meaningful to plot the trend results as point symbols on the map. If the network is 
dense, or the quantity being mapped has a gradient, then the results may be contoured. At 
times it may also be desirable to couple a map with a time series plot. The point is, the 
analyst must decide on an appropriate graphical design for meaningfully and objectively 
depicting the spatial characteristics of the trend results. Examples of alternative approaches to 
evaluating and illustrating trends in a spatial/regional framework, along with assessments of 
their relative strength and weakness, follow. 

 
Example 1. Map of trend test results for a collection of stations 
 
One of the most common approaches to assessing spatial or regional trends is to apply a test 
for trend as described in Chapter 5, to the hydrological time series collected at a number of 
individual sites. The test results (such as trend direction and significance level) are then 
mapped and interpreted in terms of their spatial distribution. An example of this approach 
was used by Smith et al. (1996) in a study of trends in 14 physical and chemical variables 
measured monthly at 77 river sites in New Zealand between 1989 and 1993. Mapped results 
for two of the variables, flow (discharge) and water temperature, appear in Fig. 8.1. The 
information depicted on the maps includes, for each sampling site, an identifier, a trend 
direction, and the trend significance level. The site identifier is presented as a three-digit 
alphanumeric code. The trend direction is depicted by a triangle, pointing upward for an 
increasing trend and downward for a decreasing trend. A solid circle is used to denote a site 
having no trend. The significance of the trend is illustrated by the shading of the triangle, 
which is solid when the p-value is less than 0.05, and open when the p-value is greater than 
0.05 but less than 0.10. 

The map for flow (Fig. 8.1A) indicates that nearly all sites in the northern half of New 
Zealand’s North Island experienced a statistically significant decrease in discharge during the 
period of record. On the South Island no regional cluster of trends was evident, although an 
increasing trend in flow was indicated at several stations. The authors explained the regional 
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decline in northern North Island flows as reflecting a contemporaneous rainfall decline over 
the same area that had been independently documented by others. 

 
 

Fig. 8.1. P-values for streamflow (A) and water temperature (B). Upward trends are denoted 
by  (P<0.05) and  (0.05<P<0.10); absence of trend is denoted by • (F>0.10); downward 
trends are denoted by  (P<0.05) and  (0.05<P<0.10). Source: Smith et al. (1996). 
 
 
A very different pattern of trends was found for water temperature (Fig. 8.1B). Rather than a 
regionally-specific distribution, as with flow, water temperature was found to be decreasing 
across the entire country. Downward trends were calculated at approximately half of the 77 
sites, and the declines were relatively uniform spatially. This suggests a national, as opposed 
to regional, trend that the authors report as being consistent with two very large-scale events: 
I) changes in the Southern Oscillation Index; and 2) the eruption of Mt. Pinatubo. The two 
events coupled to reduce solar insolation and lower air temperatures across all of New 
Zealand near the end of the hydrologic trend analysis period, leading to the observed water 
temperature decline. 
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Advantage of this approach: It is possible to visualize the presence or absence of trends 
(including significance level information) at individual locations within a spatial domain (i.e., 
river basin, state country, continent etc.). Provides a good basis for comparing trend test 
results of multiple variables and for identif potential causative ctors. Applicable over a range 
of network densities. 
 
Disadvantage: The observed and mapped trends are monotonic representations of change 
over the entire period of record. Detailed information on intra-period transitions, such as 
interannual or interdecadal variations, is usually not depicted. Information on trend 
magnitude, if available, is difficult to depict. 
 
 
Example 2.  Map with plots of area-averaged time series and trends 
 
In some applications, it is desirable to show the actual time series (or a variant thereof) and a 
trend line for each at several sites or areas. A good example, comparing recent changes in 
evaporation for several regions in the former Soviet Union and the United States, appears in 
Nicholls et al. (1996; Fig. 8.2). 

 
 
Fig. 8.2. Area-averaged standardized anomalies of evaporation derived from pan 
evaporimeters for sectors in the former Soviet Union in the warm season of the year, and for 
the USA. The dashed lines represent interannual variations and the smoothed curves suppress 
variations on time-scales of a decade or less. Source: Nicholls et al. (1996). 
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In the figure, it is easy to see that warm season evaporation declined over the 
European and Siberian sections of the former Soviet Union between the early 1950s and late 
1980s, while no systematic trend occurred in central Asia and Kazakhstan. Significantly, the 
rapid decline in evaporation in 1976 in the European sector occurred contemporaneously with 
a documented decrease in the diurnal temperature range across the country. Decreases in 
evaporation are also apparent in the United States, where a similar decrease in the diurnal 
temperature range was also documented. In this particular example, explicit trend tests were 
not performed. The authors chose to depict temporal change using smoothed curves without 
applying standard tests for trend. This is really a matter of choice for the analyst depending 
on the objective. One could very easily apply this same approach and incorporate standard 
parametric or non-parametric trend tests. 

 
Advantage of this approach: Provides a very simple and flexible means of depicting changes 
in a variable through time; allows quick inter-site or inter-regional comparison; facilitates 
visual comparison with the time series of other variables to evaluate possible 
contemporaneous patterns or relationships. 
 
Disadvantage: Difficult to use as a page-sized presentation of results when there are many 
site or regional time series to display. 
 
 
Example 3. Maps of regionalized variables with time series plots 
 
Occasionally, a large database is available (such as for runoff or groundwater levels) that 
contains many years of observations collected at many locations. Such data sets present 
unique opportunities for investigating spatial/regional trends because it is possible, using 
multivariate statistical techniques, to derive a new set of “regional” variables each having its 
own time series. The benefit to such an approach is that rather than selecting an arbitrary 
region (based on political boundaries, climatic zones, etc.), it is possible to objectively define 
regions based on their covariabiity through time. Lins (1985, 1997) and Lins & Michaels 
(1994) have demonstrated this approach using a combination of principal components 
analysis and nonparametric trend testing with both monthly and annual streamflow data. 

An example of this work, based on monthly data, appears in Fig. 8.3. The map on the 
upper side of the figure (Fig. 8.3A), is one of the regional patterns produced by the principal 
components analysis (PCA). The map, depicting an Upper Mississippi River pattern, is a 
contour map of the principal component loadings on the second principal component of 
December streamflow. The PCA was performed on monthly mean values of streamflow at 
559 stations across the conterminous United States for all Decembers between 1941 and 
1988. This regional pattern of variation, focused on the Upper Mississippi River, explains 
14.5 percent of the total variation in December streamflow across the United States during 
the period 1941-88. 
The plot presented below the map (Fig. 8.3B) depicts the time history of the principal 
component scores for the Upper Mississippi regional pattern. The scores indicate the relative 
importance of this pattern, in comparison to all other December principal component patterns, 
for each year. In other words, the scores provide a measure of how closely the streamflow 
pattern in any given December matched the aggregate pattern captured by the principal 
components analysis. Values near zero (e.g., 1970) indicate that the conditions in December 
of that year didn’t closely match the mapped principal component pattern. In contrast, 
relatively high values (e.g., 1983) indicate that the observed conditions matched the PC 
pattern very closely. it is apparent from the plot that the Upper Mississippi region 
experienced increasing streamflows during the month of December between 1941 and 1988. 
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By applying the Mann-Kendall test to the principal component scores, Lins (1994) 
documented that a statistically significant increase did, indeed, exist for this pattern. 
 
 
 

 
 
 

 
Fig. 8.3. The Upper Mississippi pattern of streamflow variability in December (A). 
Contoured values are principal component loadings; contour interval is 0.15. Temporal 
variation in the principal component scores for the Upper Mississippi pattern (B), with results 
of application of Mann-Kendall test to the scores, and fitted trend line (dashed). Source: Lins 
& Michaels (1994); Lins (1997). 
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Advantage of this approach: Provides a comprehensive characterization of spatial/regional 
trends based on the inherent regional variability in the data; facilitates good graphical 
presentation (both in map and plot form). 
 
Disadvantage: Requires relatively large spatial time series having no missing values. Is a 
more complex analysis and requires the analyst to exercise additional care in interpreting and 
explaining the results. 
 
 
Discussion 
 
In preparing for an analysis of regional trends, analysts should give as much thought to their 
problem’s spatial aspects as to its temporal elements. The point to this form of trend analysis 
is intrinsically geographic and one must carefully weigh techniques that ensure and enhance 
geographical consistency, both in terms of analytical design and graphical output. Such 
consistency can best be achieved by incorporating, to the extent possible, three elements in 
each regional trend analysis: 

1)  a map that displays either detailed trend information or provides a geographical 
reference for the trend results; 

2)  time-series plot that includes a fitted trend line, smoothing curve, or trend test 
statistic; and 

3)  a robust quantitative estimate of trend direction, magnitude, and significance. 
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CHAPTER 9 

 
TESTING FOR CHANGE IN VARIABILITY 

AND PERSISTENCE IN TIME SERIES 
 

Geoffrey G.S. Pegram 
 

9.1 Introduction 
 
Non-stationarity can take many forms. For sequences of independent random variables these 
forms include 

• shift in mean from one level to another 
• trend, linear or otherwise 
• heteroscedasticity (change in variability). 

The above may be tested using conventional tests. 
For time series that exhibit dependence, non-stationarity becomes harder to test. In 

these cases, possible forms of non-stationarity are 
• shift in mean (*) 
• trend (*) 
• heteroscedasticity (#) 
• change in correlation structure (a). 
The first two of these (*) are first order problems. They may be treated using the same 

techniques as for independent sequences, but with appropriate adjustments for correlation. 
This is elaborated on below. The second pair of problems (#) fall into the group of second 
order statistical testing. Possible approaches to testing for changes in heteroscedascity, and 
changes in the serial dependence structure or persistence of time series are considered in the 
following sections. It should be noted that there is currently very little in the literature on 
these two issues. 

 
 

9.2 Techniques employed 
 
This section details suggested statistical methods, tests and graphical approaches that may be 
of use when testing for change in variability and persistence in time series. Use of the 
methods is illustrated via examples in the final section. 
 
9.2.1 Symmetrizing transform (Box-Cox) 
It is often useful to symmetrize the data before testing (e.g. prior to application of Moolman’s 
test (Moolman, 1985)). This is important for parametric tests that are often based on the 
assumption of normality, but is less important for non-parametric tests. The transform is: 
 

  (9.1) 
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Choose T so that (Mean(xT) - Median(xT))/dF ≅ 0, where dF is the fourth spread of xT , i.e. the 
distance between the lower and upper quartiles. 
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9.2.2 Moolman ‘s modification of the t-test 
It is not obvious how to test for change in mean or trend in a time series exhibiting serial 
correlation. Moolman’s (1985) contribution was to adapt the usual t-test for shift in means or 
trend development to normal AR(1) processes with parameter φ. He derived the relation that 
 
 ( ) ( )[ ]φφα α −Φ−= 11 z  (9.2) 
 
where zα is the upper critical l00α% value under independence, Φ(.) is the cumulative 
standard normal and α(φ) is the significance level of the dependent series. He found the t-test 
more powerful than the U-test (Wilcoxon, 1945; Mann & Whitney, 1947) in detecting shift 
and trend and that normality was approached by n = 70 (see also the example in the final 
section of this chapter). This technique provides an alternative to the non-parametric tests 
presented elsewhere in this report. 
 
9.2.3 Testing for variability and persistence 
The sample variance and first serial covariance of a zero-mean sequence are given by: 
 
      and (9.3) ∑= nxs i /2

2

  (9.4) ∑ += nxxs ii /1
2φ

 
where φ is the first serial correlation coefficient. These are summary (global) statistics and are 
averages of individual elements computed from the sample. 

A possible approach to testing for changes in variability and persistence is to consider 
the terms 2

ii xv =  and ci = xixi+1. The {v} and {c} series are plotted, and non-parametric tests 
are applied to the segments of the series that are considered to be different. 

An additional statistic that can be used for testing persistence, useful especially when 
the sample is suspected of being drawn from a non-stationary process, is based on the 
variogram at lag-one which is given by: 
 
  (9.5) ∑ +−= nxxg ii /)( 2

1

 
where the sequence {x) does not need to be zero-mean. As with the {v} and {c} series, the {g} 
series, made up from the individual elements of g, can be plotted and then non-parametric 
tests used to detect change. Indications are that, in tests on persistence, the elemental 
variogram g is more powerful than the covariance c for detecting change in correlation in a 
time series (see example in final section of this chapter). 

A multivariate extension particularly useful for testing for change in a basin or region, 
is to compute the sequence Vt = cov(xt,xt+1), which is the covariance between the vectors of 
successive observations of streamflows (monthly or annual) for example. This can be 
generalised to the variance and the variogram if desired. 
 
9.2.4 Grouping by threes to visualize and test for variability 
A fairly simple method of visualizing the variation within a time series is to successively 
group, and average by threes, the elemental statistics such as {v}, {c} or {g}. This is easily 
achieved using a spreadsheet. The averages of each of the successive sequences is equal to 
the global variance, covariance or variogram of the sample. The successive grouping of the 
elements assists in visually detecting shifts and trends in these statistics. 

The approach is illustrated below for the case of the covariance, c. Let 
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 Ci = xixi+1,      i = 1, 2, … , n-1 (9.6) 
and define 
 
 R3j = (c3j-1 + c3j + c3j+1)/3,    j = 1, 2, ... , (n-1)/3 (9.7) 
 R9j = (R3j-1 + R3j + R3j+1)/3,    j = 1, 2, ... , (n-1)/3x3 (9.8) 
 etc., 
 
with the final sequence containing at least 3 groups. For example, if n = 244, the last 
grouping will be R81 with three elements in it. Of course, the cascade can be computed with 
any number of values forming the sequences of separate partial sums, but the symmetry 
associated with the odd numbers centres the successive sums at the mid-points of the 
intervals they summarize which is nice for plotting. 

Once such a plot has been made, then it is relatively straightforward to decide whether 
φ is stationary or not. Where the R values appear to exhibit a trend, this can be treated by 
parting the series in two and comparing the two estimates of the serial correlation from the 
two sub-samples (found by averaging the covariances ci), using a t-test with Moolinan’s 
modification for correlation between the ci values. A more convenient way may be to use a 
non-parametric test on parts of the sequence {c}. 

 
9.2.5 Windowing 
An alternative to grouping by threes is a moving window wherein the statistic of interest is 
calculated. This is particularly appropriate in the calculation of the Hurst coefficient, for 
example. A development and exposition of this technique is given by Radziejewski & 
Kundzewicz (1997). 
 
9.2.6 Exponential filter 
To examine change in the occurrence of flood-producing rainfall, one needs to extract the 
annual maxima of the accumulation of rain, not the 1 hour or 1 day maxima. Exponentially 
filtering, with a mean of 5 days for example, will yield maximum accumulations which are 
more appropriate for flood analysis. These can then be examined for change. 
 
9.2.7 The bootstrap 
A method which has promise when used in combination with the sequences of elemental 
variances, covariances or variogranis is the bootstrap. it is used here to compare the slopes of 
the linear trend lines fitted to the {v}, {c} or {g} values. Because of linearity, these trends are 
almost identical to the trend lines fitted through the derived R values (equations 9.7 and 9.8). 
Again, the method is illustrated for the case of the covariance. 
1  The first step is to take the series in question and estimate the linear trend-line of c by 

least-squares. 
2  The next step is to analyse the time series, assuming that it is stationary, and fit the 

appropriate model ARMA (p,q) : p, q = 0, 1 or 2, employing the usual Box-Jenkins 
approach. Take the residuals {αi} which (under the null hypothesis) form an 
independent sequence derived from this analysis. From these, by sampling with 
replacement, generate a large odd number (say 101) of bootstrap sequences {xi}* of 
the same length as the original sample, using the parameters of the ARMA model 
estimated from the original sample. Hereon one can choose how to test for trend (see 
below for an example based on pairwise covariances using the grouped by threes 
approach). 

3  In exactly the same way as in the original sample, calculate the bootstrapped {ci}* 
pairwise covariances and fit linear trend lines through them with slopes b*. Do this 
101 times. 
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4  Accumulate all the 101 b* values and compute their mean, median, standard deviation 
and fourth spread. 
The resulting statistics give the distribution of b under the null hypothesis of the 

sequence being stationary and provide a guide as to whether b measured in the original 
sample is significantly different from zero. 

 
9.3 Examples 
 
In this section, the methods described above are illustrated using a set of examples. 
 
9.3.1 An artificial sequence 
Fig. 9.1 is a plot of an artificial, standardized sequence of length 244, which was generated 
with a first serial correlation coefficient, r, that increases linearly from 0.0 to 0.4 over the 
length of the sequence. This sequence will be used to examine how to detect trend. It can be 
seen from the trace in the figure that the differences between successive values reduce as the 
correlation increases, as expected. 

 
Fig. 9.1. Artificial standarized normal time series generated with r increasing linearly from 
0.0 to 0.4. 
 
 
Fig. 9.2 shows the pairwise covariances ci = xixi+1 for the sequence shown in Fig. 9.1. The 
trend line is fitted using linear least squares. Fig. 9.2 also shows the ci values successively 
grouped by threes (3, 9, 27, 81) with a linear trend fitted through the R27 values (averaged 
values of the successive 27-long sub-sequences). This gives a close approximation to the 
underlying trend. 

The bootstrap resampling of the trend-line fitted through the pairwise covariariances of 
101 sequences computed using the algorithm outlined above yields the following statistics of 
the 101 slopes: 

• Mean 0.00015 
• Standard deviation 0.00128 
• Upper 95% confidence limit 0.00277 
The observed value for the original series is 0.0017. Comparing this with the above 

statistics shows that the trend of the covariances is not significant at this leveL This is 
confirmed by examining the list of slopes of the bootstrap samples, for which 10 of the 101 
slopes exceeded the sample value. 
Fig. 9.3 shows the pairwise lag-one elements (all positive) of the variogram grouped by 
threes. It can be seen that the slope of the trend line is negative and confirms that the higher 
the persistence, the smaller the differences between successive values. The bootstrap samples 
of the slopes of the elemental variogram values gives a lower 95% confidence limit of - 
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0.00449 which is just above the sample value of -0.0048. Only 2 of the 101 bootstrapped 
slopes were below this value, lending support to its significance. 

From this exploratory calculation on an artificial sample, it seems that the sequence of 
variograin elements is more sensitive to the detection of trend than is that of the covariance. 
 
 

 
Fig. 9.2. Pairwise covariances grouped by threes for the sequence in Fig. 9.1. 
 
 

 
Fig. 9.3. Pairwise lag-one variogram grouped by threes for sequence in Fig. 9.1. 
 
 

 
Fig. 9.4. Tree-ring data from South Africa. 
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9.3.2 Tree ring data from South Africa 
Figure 9.4 presents a sequence of raw tree ring data that Moolman used in his thesis (1985). 
Performing a Box-Cox symmetrizing transform with exponent 0.459 yields a value of 0.619 
for the serial correlation. To test whether the mean of the first 20 years is the same as the 
remainder under persistence, Student’s t-test is calculated assuming unequal variances. This 
yields a one-tailed probability of exceedence of 0.0011 which has a z-value of 2.29. 
Multiplying this by (1-0.619) gives 0.872 which has a probability of exceedence of 0.192, 
which is not significant. 
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CHAPTER 10 
 

SEGMENTATION 
 

Piere Hubert 
 

10.1 Introduction 
A possible manifestation of nonstationarity in time series is the existence of some 
modification of their statistical parameters, and especially a sudden change of the mean.  
Series with such a change may exhibit a strong temporal persistence, with high values of the 
Hurst coefficient, but poorly fit any autoregressive model. 

Some classical tests, (Pettitt, 1979; Buishand, 1982) help in detecting a possible 
change point of the mean so that the original nonstationary series can be split into two 
stationary sub series. The Bayesian procedure defined by Lee & Heghinian (1977) supposes 
the a priori existence of a change of the mean somewhere in the series and yields at each time 
step an a posteriori probability of mean change. 

Yet these classical approaches seek one change point in the original series To go 
further and to explore multiple singularities, a segmentation procedure of time series has been 
developed (Hubert, 1997). It yields an optimal partition, from a least squares point of view of 
the original series into as many subseries as possible. The Scheffe test of contrasts ensures 
that all differences between two contiguous means remain simultaneously significant. The 
main problem has been to master the combinatory explosion while exploring the tree of all 
possible segmentations of a series. 

 
 

10.2 A procedure of series segmentation 
 
10.2.1 Definitions 
Given a time series composed of n numerical values: 
 
 xi i = 1,2,…,n 
 
A series xi, i1 ≤ i ≤ i2 where i1 ≥ 1 and i2 ≤ n is called a segment of the initial series. Each 
division of the initial series into m segments constitutes an m-order segmentation of this 
series. Thus, given a particular m-order segmentation of the series, and given ik, k = 1,2,…,m, 
the rank in the initial series of the extreme end of the k-th segment (by convention, we will 
pose i0= 0), 
 
 niiii mmk =<<<<<= −10 ......0  
 
one can note nk = ik – ik-1 the length of the k-th segment, and Xk its mean (local mean): 
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and define the quantity: 
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as the quadratic deviation between the series and the considered segmentation. This deviation 
depends only, for a given series, on the adopted segmentation. 

For m = 1 and m = n, there is only one possible segmentation: 
 
 D1 = D(i1) = nσ2 i0 = 0 i1 = n (10.4) 
 
where σ is the standard deviation of the initial series and: 
 
 Dn = D(i1, i2,…, in) = 0 i0 = 0 i1 = 1,…, in = n (10.5) 
 
For any order m between 1 and n, there exist several possible segmentations. 
 
10.2.2 Enumeration of the segmentations of a series 
Given N (n,m) the number of m.-order segmentations of a series of length n. The number of 
segmentations is equal to the number of: 
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The number of possible segmentations is very high. So, it is definitely impossible to look for 
an optimal segmentation by simple enumeration of all possible cases and it is necessary to 
define an optimization algorithm. 
 
10.2.3 Optimization algorithm 
The m-order segmentations of series of length n can be organized like the branches of a tree. 
The length of the first segment can take on a value between 1 and n-(m-1) because the initial 
series, diminished from the first segment should be divided into m-1 segments. The choice of 
the first segment length constitutes the first level of branching. n1 is this first choice. We are 
now faced with the problem of the m-1 order segmentation of a n-n1 length series. n2 will be 
the second segment length, the value of which will be bounded by 1 and n-n1-(m-2). One can 
thus continue until the choice of the length of the (m-1)-th segment, (m-l)-th and last level of 
branching because the length of the m-th segment is then entirely defined as: 
 
 121 ... −−−−= mm nnnnn  (10.7) 
 
The branching can be generated systematically by increasing first the length of the segment 
corresponding to the deepest possible level. Taking into account the number of segmentations 
of a time series, even of modest size, one will bypass exhaustive exploration of the branching 
and the corresponding combinatory explosion by means of a branch and bound type 
algorithm. 

This algorithm permits one to obtain the optimal segmentations of successive orders 
of several tens of terms in less than one minute on a PC permitting thus a conversational use. 
However, it is unable at the present state to tackle series of much more than hundred terms 
like the dendrochronological ones. The combinatory explosion dominates then, but 
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introducing some heuristics about a first guess of the optimal segmentation value would 
improve the algorithm, shortening dramatically the segmentation tree exploration. 

 
10.2.4 Validity test of the segmentations 
The described algorithm makes it possible, for a given order, to determine the optimal 
segmentation in the least squares sense. This procedure should be completed by the 
introduction of a constraint applying to the segmentations produced. This will be acceptable 
only if the means of two contiguous segments are significantly different. 
 
         k = 1, 2,…, m-1 (10.8) 1+≠ kk XX
 
A complete segmentation being produced, this can be tested using the concept of contrast 
introduced by Scheffe (1959). 

The Scheffe test has been integrated in the optimization algorithm in order to verify 
the validity of the segmentations concerning the entire chronological series under study. 
During exploration of the m-order segmentations branching of the complete series, a 
segmentation whose square root deviation from the series is inferior to the weakest square 
root deviation already obtained is not retained as a new optimal provisional segmentation 
except if the null hypothesis of the Scheffe test is rejected at a chosen level of confidence for 
all the above defined contrasts. The optimal solution supplied by our algorithm will thus be 
necessarily valid according to the Scheffe test. 

The Scheffe test will supply a means of limiting the order of segmentation. The 
simple criterion of deviation does not permit it because the rest of the deviations between the 
complete series and the best segmentation is not increasing with m. Considering a series of 
length n, the optimal m-order segmentation can thus never be preferable to the optimal (m+l)-
order segmentation. One would then be led to pursue the process of segmentation up to the n 
order, for which the deviation is zero, but which does not present any interest at the level of 
the interpretation because it brings one back to the series under study. However, if during the 
(m+l)-segmentation process, no segmentation produced shows itself to be valid according to 
the Scheffe test, one retains the optimal m-order segmentation as the best segmentation of the 
proposed series. 

This use of the Scheffe test nevertheless suffers from a drawback as pointed out by 
Bernier (1993). It would be applied to segments randomly chosen independently of the data. 
It is applied to dates of change determined a posteriori and there is a risk that a number of 
such changes can be fallaciously significant, so it appeared useful to make some simulations 
in order to have a better idea of the segmentation procedure credibility. 

 
10.2.5 The credibility of the procedure 
The procedure of segmentation can be regarded as a test of stationarity, the affirmation that 
the series under study is stationary constituting the null hypothesis of this test. 

If the procedure does not produce any acceptable segmentation of the order greater 
than or equal to 2, the null hypothesis will be accepted. It will be rejected in the opposite 
case, but there obviously exists a risk of the first kind error (which consists of rejecting the 
null hypothesis when it is valid), as a consequence of the same risk in the application of the 
Scheffe test to the different contrasts of a segmentation. However, no attempt to attribute a 
level of significance to this test of stationarity will be made because such a level of 
significance, although being a function of that of the Scheffe test, does not depend on it in a 
simple way. For a given significance level of the Scheffe test, one can only propose an 
empirical observation of the first kind errors when applying the procedure of segmentation to 
synthetic stationary series. A hundred series of 50 normally distributed random values 
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according to N(0,1) have been tested in order to establish a reference base for the 
hydrometeorological series of a comparable length which will be further studied. 

When the Scheffe test is done at the 0.05 significance level, 47 of the 100 synthetic 
stationary series are segmented which signifies that the procedure rejects the hypothesis of 
stationarity for these series. If the Scheffe test is applied at the 0.01 significance level, this 
number is no more than 11, which means that the noise associated with the procedure is 
reduced to an acceptable level. Thus, this significance level will be used further unless 
otherwise stated. 

In our first study of hydrometeorological series the main danger was to admit the non 
stationarity of series which were in fact stationary. The purpose of the above simulation 
approach is to determine, in this case, the significance level of the procedure for a given 
significance level of the underlying Scheffe test. But this approach does not exhaust the 
subject; first of all because it concerns only a simulation and is not a demonstration; next 
because it does not say anything about the significance level of the procedure applied to non- 
stationary series (composed of several stationary sequences) the analysis of which also 
carries, obviously, a risk of error of the first kind. Such simulations would have to be further 
pursued. 

 
10.3 Applications 
 
The segmentation procedure was first applied (Hubert et al., 1989) to West-African 
hydrometeorological series (33 rainfall series plus Senegal and Niger discharge). A previous 
study (Hubert & Carbonnel, 1987), using the Bayesian procedure of Lee & Heghinian (1977) 
suggested that the end of the sixties was a major change point for West African 
hydrometeorological annual time series, the mean then decreasing abruptly by about 30 %, 
but apart from this major change, some series exhibited a relatively minor change at the end 
of the forties. 

These observations led us to devise the previously described segmentation procedure. 
Its applications to our series yielded very consistent results all over the region. Five 
successive and contrasted climatic phases have been determined in this region covering the 
time span from 1905 to 1985: before 1923 (dry), from 1923 to 1935 (wet), from 1936 to 1950 
(dry), from 1951 to 1970 (wet), and after 1970 (dry). This study showed regional consistence 
of the results, local random variations of rainfall series being rubbed out 

The study of African rivers discharge (Fig. 10.1) has been updated and enlarged 
(Hubert & Carbonnel, 1993; Hubert et al., 1998). The segmentation procedure appears quite 
robust and the addition of new data does not modify the change points already determined. 

The segmentation procedure has been used in other studies regarding African climate 
such as Cbaouche (1988), Moron (1992), Laraque et al. (1997), Paturel et al. (1997), Servat 
et al. (1997) and applied to Tunisian rainfall series by Kebaili-Bargaoui (1990). It was also 
used concurrently with other methods by Slivitzky & Mathier (1993) in a study devoted to 
the twentieth century climatic changes in the Laurentian great lakes. Some applications have 
also been devoted to East European rainfall time series in Romania and Bulgaria (Carbonnel 
& Hubert, 1994; Carbonnel et al., 1994) and to climate evolution in Bolivia (Ronchail, 1996). 

The Segmentation Procedure software is freely available on the web at the address: 
http://www.cig.ensmp.fr/~hubert with instructions for use in English, French and Portuguese 
and a sample dataset. The Segmentation Procedure has also been included in various software 
packages such as TSA1 of the Norwegian Hydrological Service and KHRONOSTAT 
developed by IRD-ORSTOM (See the Software chapter in this volume). 
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10.4 Conclusion 
 
The purpose of this paper was mainly to present a first view of the segmentation procedure. 
This procedure has been assessed by Bernier (1993) who pointed out that the point changes 
determined by segmentation were optimal according to the general Bayesian procedure he 
proposed. Cavadias (1992, 1993) quoted this segmentation procedure in his survey of current 
approaches to modelling of hydrological time series with respect to climate variability and 
change. 

 
Fig. 10.1. Optimal segmentations of the mean annual discharge for rivers Senegal at Bakel 
(1903-1993) and Niger at Koulikoro (1907-1992). The procedure automatically stops at the 
five order for Senegal data and at the six order for Niger data. 

114 



 From experience gathered in the course of different applications to various time 
series, the segmentation procedure appears to give reliable results, comparable to those of 
classical and Bayesian methods. The basic algorithm would be improved in order to process 
long time series or series exhibiting missing values and more simulations would clarif its 
significance level estimation. Nevertheless, the segmentation procedure appears to be a useful 
robust tool for preliminary analysis needed at the present stage of studies into climate 
variability and change. 
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CHAPTER 11 
 

CRITERIA FOR THE SELECTION OF STATIONS 
IN CLIMATE CHANGE DETECTION NETWORKS 

 
Paul Pilon 

 
 

Many hydrological variables could be of importance to studies of climate change and 
variability (WMO, 1988; Peterson et al., 1997; GCOS, 1998). Lawford (1992) provides the 
view that many variables within the natural sciences could be of importance to such studies. 
However, Burn (1994, P. 28) points out that many such variables may not have records 
available for a large number of locations nor have a sufficient length of record. Intuitively, 
there must be sufficient data and such data must also be of a suitable quality for them to be of 
benefit in studies of detection of change. He selects streamflow as the hydrological variable 
of choice in hydrology for detecting the impacts of climate change as “it represents a basin 
integrated response to hydrological inputs and therefore affords good spatial coverage.” 
There are, however, other variables that could be of importance for establishing the biological 
and chemical impacts of climate change on natural systems. 

In essence, hydrometric or streamflow data are seen as very important for furthering 
our understanding of physical processes and their feedback within the water cycle and 
climate change. It has also been suggested (Pilon et al., 1991; Burn, 1994) that certain 
responses of the hydrological cycle to climate change may be “hydromagnifled”, such that 
elements within hydrometric data may be better able to elucidate change than traditional 
climatic variables. In order to ascertain which hydrometric sites may be most suitable for use 
in the detection, monitoring, and assessment of climate change, a set of selection criteria must 
be identified and applied to available monitoring stations. This paper reviews a number of 
efforts in the creation of specific or “specialised” observational networks, thereby illustrating 
selection criteria of importance to those interested in studies of climate change and 
variability. These case studies cover surface climate, hydrometric, and water quality 
observational systems. In-depth material is presented on the selection criteria used within 
each. One potential exception to the primary focus of the networks described below is the 
USGS National Stream Quality Accounting Network, wherein many of the sites are chosen to 
evaluate and track sufficiency of regulatory and pollution prevention measures on the 
environment, with some sites being potentially suitable fur climate change studies. This 
network does, however, provide an excellent example of a national network for determiit.g 
human and terrestrial impacts on the aquatic environment. 

 
11.1 Surface climate networks 
 
WMO (1966 and 1986) have established criteria for the WMO Reference Clhnatological 
Stations (RCS) netwo& The RCS network comprises sites from the existing national 
networks of climatological stations. Its purpose is to facilitate the detection and accurate 
evaluation of climate change. This network is comprised of stations with relatively long 
records, whose data are available, verified and “homogeneous”. The network reflects a wide 
distribution of sites throughout the world. 
WMO (1966) defines homogeneity of climatological data as “intending to mean uniform 
representativeness of the data for conditions in rather large geographical areas.” The 
homogeneity of the data is compromised through the alteration of local conditions such as 
urbanisation, landscaping, reforestation, and other changes to the local environment. It is also 
compromised through changes in instrumentation, exposure of instrumentation, location of 
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instrumentation, and change of observing times. Homogeneity within the climate record is a 
very serious problem that jeopardises the utility of data for detection studies. Much effort is 
dedicated to making climatological records homogeneous through the correction of archived 
data WMO (1966) suggests the use of regionally averaged climatological series as indices 
superior to individual station series, especially for highly variable elements such as 
precipitation. This regional averaging is suggested, in part, due to the complications 
associated with “homogenising” the data series. 

WMO (1986) provides the following criteria for the preliminary identification of a 
candidate RCS. The criteria are: 

• permanency— the existence of the site into the foreseeable future; 
• location — in an environment unaffected by densely populated or industrialised areas; 
• quality assurance — trained observers, reliable and calibrated equipment, regular 

inspections, technical servicing with back up equipment; 
• longevity - records should span as long a period as possible; 
• homogeneity — as few as possible significant relocation of instruments, changes of 

observing times, instruments, and exposure, or observing techniques; 
• quality control - data should go through the strictest procedures; and 
• measure a minimum set of climate elements of either mean temperature or 

precipitation, including preferably minimum and maximum temperature. 
The RCS network aspired to have a density of 2 to 10 stations per 250,000 km However, this 
density would not be considered adequate for determining the spatial coverage of 
precipitation. 

WMO (1993) documented the efforts made in various countries regarding the 
establishment of a RCS network. It was reported that Canada had developed additional 
criteria that included at least 30 years of “continuous” data and with no data gaps exceeding 4 
years. The data have to be homogeneous in maximum and minimum temperature, or 
correctable. Canada (Environment Canada, 1996) considered only sites with both daily 
temperature and precipitation records, which happened to be the vast majority of the 
Canadian network. During the late l980s, it took approximately five years to complete a 
national review that culminated in the identification of 254 stations as members of the 
Canadian RCS network. An archive of corrected or adjusted observations is not available. 
WMO (1993) does indicate, however, that the adjustments are made to the data from stations 
within the US Historical Climatology Network (USHCN). Corrections to the data are applied 
for: time of observation bias; station changes; urban heat island effect various temperature 
system effects; precipitation including rain gauge under-catch; and other discontinuities. This 
list of corrections exemplifies the problems encountered in using climate records for 
detecting potential anthropogenically induced climate change. 

Peterson et al. (1997) describe the process used within (ICOS to identify candidate 
stations for the Global Stations Network (GSN). A multiple step process was used to create a 
list of about 1000 stations. This process and its selection criteria are now described. The 
initial step was to identify potential sources of climatological data. The sources used included 
the Global Historical Climatology Network (GHCN) (Vose et al., 1992), which is similar to 
the aforementioned USHCN, and a data set from the United Kingdom (Jones, 1994). These 
data sets contain 7,283 and 2,525 stations, respectively, after removal of a subset of USA 
sites for duplicative reasons. Both sets have had some form of homogeneity corrections 
applied to their data series. The remaining two sources of information comprised the WMO 
1961-1990 Normals stations and the lists of the RCS that had been submitted to WMO by 
Member states. These two sources comprised approximately 3,342 and 2,283 stations, 
respectively. These latter two sources may contain duplicates between them and with the 
previous two sources. The combined four sources contained an estimated 8,653 unique 
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stations. Peterson et al. (1997) reported that it was a difficult task to identify potential 
duplicates among these different sources for a variety of reasons. They devised a ranking 
scheme to establish the most suitable stations for inclusion in the GSN. This scheme is shown 
in Table 11.1. 
 
Table 11.1. Ranking Scheme for GSN. 
Category Points Weighting 

 
Record length Up to 20 - number of years since 1896 until 1996 multiplied by 0.2 
Data quality or 
homogeneity 

Up to 20 - only stations in the first two global data sources (i.e., 
GHCN and United Kingdom “Jones” data sets) 
- number of years of homogeneous data multiplied by 0.4 

Data quality or 
homogeneity 

Up to 10 - only stations contained in the WMO list of RCS 
- number of years of homogeneous data multiplied by 0.4 

Real-time 
capability 

Up to 20 - no weight given to stations where there have been no data 
received since 1990 

Pristine nature Up to 20 -20 points allocated to a rural station (population of <10,000) 
- 15 points for 10,000 - 50,000 
- 10 points if population statistics are unknown 
- none, if population >50,000 

Continued 
longevity 

Up to 10 - from 1-4 points assigned if it was part of different global 
networks (e.g., GUAN, GAW, etc.) 

Total Up to 100  
 

A complex iterative approach was used to select the highest weighted stations in each 
geographical area, and with a certain variation in procedures to allow for mountainous 
conditions. The selection of the network was finalised and contained 1000 stations, having an 
average quality of 67.6. It is interesting to note that 18% of the final stations within the GSN 
were in small towns, having a population greater than 10,000, while an additional 18% were 
in urban centres, having a population in excess of 50,000. Given the rather low reporting rate 
of current network, as mentioned earlier, it is unfortunate that GCOS (1998) does not make 
mention as to what percentage of this reduced network may be attributed to the highly 
populated areas. 

Environment Canada (1996) reported recent efforts in redefining its RCS network 
Approximately 15 of the original 254 stations had been discontinued. In addition efforts had 
gone into the identification of additional stations, some of which were located near the 
discontinued RCS. These efforts resulted in the definition of a Canadian RCS network having 
approximately 300 stations. It was noted that the spatial coverage hi southern Canada is quite 
good, but as one proceeds north, the density of stations becomes greatly reduced. Regional 
gaps in the north become evident. It was also noted that many of these sites are either 
operated by other agencies or by volunteers. Hence, contingency planning was required in 
order to address the problem of discontinuation of sites from the network It was 
recommended that there be a two year overlap at these automated sites, however this was not 
carried out in most cases due to fiscal and other operational restraints. 
 
11.2 Hydrometric networks 
Wallis et al. (1991) describe the construction and publication for a combined climate and 
hydrometric data set for the continental United States. This daily data set includes 1009 US 
Geological Survey (USGS) streamflow stations and 1036 climatological stations, with 
missing values estimated. The climatological stations within this data set are a subset of the 
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USHCN. They removed stations from the USHCN when data were not available in electronic 
form, more than 20% of the data were missing, very short period of record (e.g., four years) 
or when monthly temperature or precipitation values were not available. They estimated 
missing data using ratios from the nearest neighbour, or in some cases the long-term mean 
was used. Their efforts reduced the 1228 temperature and 1220 precipitation sites of the 
USHCN to their 1036 temperature and precipitation stations. 

Wallis et al. (1991) noted that the effects on streamflow by human activities presented 
somewhat of a different problem than for climate stations. They argued that most gauged 
streams within the United States “are affected to some extent” by human activity. The most 
significant effects on natural flows would be upstream containment structures, diversions, 
and water loss through consumptive uses. They also provided a brief history of activities 
within the United States to define a network of sites that would be free of water management 
effects and presumably would represent stable land-use conditions. The USGS developed a 
“benchmark” network comprising approximately 50 basins. These basins were also relatively 
small in size. Wallis et al. (1991) reported on the earlier work of Langbein & Slack (1982), 
who had defined a group of 200 sites to evaluate long term streamflow variations. Langbein 
& Slack (1982) classified stations into three classes. The first class comprised sites with no 
diversions or regulation. The second class included basins with diversions or storage 
structures accounting for less than 10% of the annual mean discharge. The third class 
represented the remaining sites. Wallis et al. (1991) reported that unfortunately many of the 
identified sites are no longer in service, with one site being discontinued in 1913. 

Their primary concern in the identification of streamflow sites for detection studies 
was that the data be “as free as possible from upstream diversions and storage”. They also 
wanted the data to be suitable for rainfall modelling; hence, the streams had to be unaffected 
“at the storm response scale”, which to them implied daily data. Another aspect affecting 
their screening criteria was that the data within the national climatological archive are only 
available in electronic form since 1948. As their intent was to have comparable periods of 
coverage, they focused their attention on a similar period of time for the streamflow data. 
From the USGS daily archive streamflow data, they first screened all sites for those with 40 
years of data and for which operations had started prior to 1948. This resulted in 5,000 
stations being identified. They then allocated each of these into one of six classes: 

• Class I - no upstream diversion or regulation, 
• Class II- minimal upstream diversions or regulations, 
• Class III - sites where the extent or effects were not known, 
• Class IV - sites that were probably unusable as they contained substantial effects, 
• Class V comprised major upstream diversions or regulation and such stations were 

considered practicably unusable, and 
• Class VI comprised stations with substantial natural upstream storage (e.g., lakes). 

In essence, only 1413 stations from Class I and 11 were retained for further consideration. 
Sites discontinued prior to 1978 were removed, resulting in the final list of 1009 sites. A 
process similar to that applied to the climate data was used to estimate missing streamfiow 
data. 

Slack & Landwehr (1992), in an update of the efforts of Langbein & Slack (1982), 
reviewed all USGS streamfiow records for the entire USA and its protectorates, through to 
water year 1988. They outlined their set of criteria for the identification of candidate stations 
and worked closely with USGS District offices to review each potential candidate. A total of 
1659 streamflow stations were identified and are contained in their Hydro-climatic Data 
Network (HCDN). The data and associated basin characteristics are available on CD-ROM. 
Slack and Landwehr present a number of maps and charts showing the locations of sites 
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throughout the USA. They also show figures illustrating the characteristics of these sites, 
such as distribution by length of record and basin size. 

In the development of criteria, Slack & Landwehr (1992, p. 2) argue that “the pattern 
of past climate variation to be discerned in the streamflow record would be confounded by 
changes induced by anthropogenic activity.” They also provide an exception to this rule when 
the “non-climatic forcing facto?’ is consistent in its application over an identifiable period of 
record. The time interval of their data is taken such that it must be shorter than the interval of 
the effect of the climate-forcing factor on the streamflow characteristic. They adopt a 
criterion that the streamflow characteristics must be representative of the natural or stable 
conditions, and the flow of the site must be representative of natural conditions at least on a 
monthly basis. They indicate that upstream controls or diversions must not affect monthly 
averaged flows. They consider both active and discontinued stations and indicate that the 
quality of such data is consistent, as all data “are collected by nationally standardized 
procedures” by the District staff. All data are stored electronically in the USGS national 
archive. 

There are six criteria that must be met for acceptance of stations into the HCDN. The 
first is that the data must be in electronic form, which does not pose a problem within their 
country. The second is the breadth of coverage. Both active and discontinued stations 
operating prior to 1988 are considered provided they span an entire water year, which is 
defined as October 1 through September 30. The third criterion is the length of record. There 
must be at least twenty years of suitable record, or less for stations in under-represented 
geographic or climatic areas. 

The fourth criterion is the accuracy of the records. The accuracy of the records had to 
be assigned at least a value of “good”. The occurrence of a few years of a less than good 
rating did not disqualify a site. Accuracy reflects several factors in the process of determining 
the discharge for a given site. These factors include, but are not limited to: the accuracy of the 
stage measurement; the stability of the rating curve; the accuracy and frequency of discharge 
measurements to establish the rating curve; and the degree of interpretation of records. 

The fifth criterion is that there must be unimpaired basin conditions affecting the 
average monthly discharge. This implies there must be: no overt adjustment of streamflow 
through diversions; no regulation by a control structure; no reduction in baseflow by 
groundwater extraction; and no change in land use that could significantly affect the monthly 
value of streamflow. Exceptions were allowed for period of stable record, or for control 
structures that did not significantly affect the utility of the data, or diversions that were either 
insignificant or stable with time. 

The sixth and final criterion is measured discharge values. By this, they infer that the 
reported discharge values are obtained by the use of USGS national standard procedures. 
Within these procedures, there is the allowance for the estimation of discharge when certain 
recording abnormalities arise, if too many estimated values are contained within a given 
month, then Slack and Landwehr assign the data a quality of less than “good”. The data are, 
in turn, discarded due to the quality of record criterion. In addition, this criterion allows for 
no constructed records, which are values of flow obtained by combining known flows of 
other sites. There are no attempts made to fill-in missing records, other than those values that 
appear in the national archive as “estimated”. 
Pilon et al. (1991) document initial efforts within Canada to establish a streamflow network 
suitable for climate change studies. Stations were selected that had stable land-use patterns, 
which would not impede the use of the data for their intended purpose. The stations had to 
have had no known diversions or control structures, and sites had to be listed within the 
national archive as having been operated for at least fifty years. This condition was not an 
inference as to the completeness of the record, as some stations could have less than fifty 
years of data, yet span a time period longer than fifty years. There was also no condition that 
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the station had to be currently active. The data, of course, were in electronic form. A total of 
23 sites were listed as having passed these criteria. It was obvious that this did not represent 
suitable geographic coverage for Canada, particularly as most of the identified sites were in 
the southeastern portion of the country. 

Environment Canada (1999) developed a series of criteria and applied them 
systematically to sites within their national hydrometric network. Their work has resulted in 
the identification of a specialised network termed the Reference Hydrometric Basin Network 
(RHBN). Their selection criteria and approaches follow closely these previous hydrological 
efforts, and could be considered to be more similar to that of Slack & Landwehr (1992), but 
with some modifications. 

The criteria used to select stations for the Canadian RHBN include: 
1. breadth of coverage (seasonal, continuous, streamflow and lake level); 
2. degree of basin development; 
3. no significant regulation or diversions; 
4. length of suitable record; 
5. longevity; and 
6. accuracy of the data. 

There was no need to include as a criterion the availability of the data in electronic 
format, as all the data in the Canadian national water archive are in electronic form. As well, 
there was no specific criterion established regarding the density of the network. In essence, 
judgement was used in including sites that failed to meet to some extent the established 
criteria, in under-represented geographic or ecological areas. As well, where several sites 
existed in close geographical proximity, judgement was used to select the best of those 
available, based mostly on the selection criteria of breadth of coverage, length of record, 
longevity, and accuracy of records. 

The breadth of coverage criterion refers to the types of hydrometric stations to be 
considered in the analysis. All seasonal, continuous, and lake level stations were considered 
for further screening. Seasonal stations were included in the analysis, as the prairie region has 
a number of stations operated on a seasonal basis due to local clitnatological and 
physiographic conditions. Such sites are operated from just prior to spring break-up to late 
fall. It was felt these sites would prove useful for analysis of change related to this portion of 
the year, thereby greatly increasing the spatial coverage of the network. 

Lake levels were also considered as being potentially useful for analysis of the 
impacts of climate on surface waters and were included in the screening process. Two 
designations were allowed for lakes. The first was for lakes representing closed drainage 
systems where no surface water channel exits the body of water. The second represents the 
more typical lake within an open channel system. No closed drainage systems were identified 
that met the established criteria and therefore are not represented in the final list of 7 lake 
level stations in the RHBN. 

In addition, under this criterion, only observed discharge values and values estimated 
through the application of national standard procedures were included. This infers, similar to 
the HCDN, that no sites with “constructed” records were considered for inclusion in the 
network. Overall, this “breadth of coverage” criterion is different than that set in the 
establishment of the HCDN, in that the Canadian effort includes seasonal and lake level sites. 
The second criterion reflected the degree of basin development. Stations within the RHBN 
represent pristine or, as a minimum, stable land-use conditions. No systematic recording of 
changes in landscape is made by the national hydrological service, hence a subjective 
assessment was made of the percentage of basin development for each candidate site. Pristine 
sites were considered as those having less than 10% of the surface area modified in some 
fashion. 
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The third criterion was no significance regulation or diversions within the river 
system. The national water meta-database (HYDEX), which is available on CD-ROM, 
provides information on every station regarding the basin state as being either “natural” or 
“regulated”. This designation reflects only the physical structures within the waterways 
upstream of the site. It does not reflect on the use made of land within the basin nor the 
existence of diversions. The database does not reflect the case of the removal of control 
structures, an important fact given the large number of small control structures that have been 
decommissioned. In other words, the “natural” designation in HYDEX does not infer pristine 
conditions, but it does infer that there are no control structures upstream. For “regulated” 
systems, the question arises as to whether the degree of regulation is significant. Basins with 
structures controlling less than 5% of the area of a basin are included hi the analysis. 

The fourth criterion was length of record. A minimum of 20 years was set, with the 
provision that stations in under-represented geographic, climatic, or ecozones could be 
considered. 

The fifth criterion was longevity. This criterion was to reflect the judgement of 
regional staff that the basin would remain in a pristine or stable state into the foreseeable 
future. In other words, the station must be currently active and no future activities within the 
basin would impair the data from its inclusion within the RHBN. This criterion was also to 
reflect the relative potential, although difficult in periods of fiscal restraint and budgetary 
decreases, of future funding. Hence, in some cases, preference between potential sites within 
close proximity may be given to those sites with funding secured for specific purposes such 
as flood forecasting. 

The sixth and final criterion was the accuracy of the records. Regional offices of 
Environment Canada and the Ministère de l’Environnment et de la Faune, for the Province of 
Quebec, collect streamflow data across Canada to a set of well-defined national standard 
procedures. However, as is mostly the case in hydrometry, there is no quantitative estimate of 
the accuracy of a particular published streamflow value. In this initial phase of RHBN 
development, the accuracy of the data was qualitatively assessed by local experts based on 
their knowledge of hydraulic conditions at each site, such as the stability of the control and 
the accuracy of the rating curve. They assigned a nominal score from 1 to 5, representing 
excellent to poor quality data. 

Data accuracy was assessed for both open-water and ice-cover conditions. This 
approach was taken because certain sites may possess very poor quality winter 
measurements, but have excellent open water data, or vice versa. Such knowledge may prove 
valuable in selecting the best stations for studying different seasonal conditions across the 
country. 

Systematic application of the criteria resulted in the selection of 255 hydrometric 
stations, including 7 continuous lake level, 37 seasonal streamflow and 211 continuous 
streamflow stations. The majority of RHBN stations are found in the south of Canada. Most 
of the basins found in the mid-to-northern latitudes are relatively large. There are no RHBN 
stations north of 70 degrees latitude. Although there are gaps in some other regions of the 
country (e.g., northern Quebec) the RHBN covers most of Canada’s major hydrologic 
regions. In accordance with their selection criteria, all stations have at least 20 years of 
record. Sixty percent of the flow stations have more than 30 years of record, while the 
average suitable record length is 38 years. The longest is 86 years. Basin sizes for the 
network of 248 flow stations range from 3.9 km2 to 145,000 km2. The median basin size is 
about 1100 km2 about 10% of the basins are greater than 20,000 km2 in size; about l0% are 
less than 100 km2. 

Ice effects influence the data of over 80% of the RHBN flow stations. Most stations 
where data are not influenced by the presence of ice are found in the southern coastal areas. 
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An important aspect considered by Environment Canada was the assessment of the 
accuracy of each station within the selection process. Accuracy of data is considered to be of 
great pertinence in studies of climate change and variability. Hence, additional attention is 
given this aspect in the sequel. 

 
 

11.3 The quantitative assessment of accuracy of hydrometric data 
 
Environment Canada (1999) describe a novel approach, which is of potentially great utility in 
the assessment of the accuracy of site specific data. They indicate that in the near future, the 
accuracy of data collected at RRBN stations will be re-assessed using this more systematic 
and quantitative approach. This approach involves the determination of a single composite 
index, reflecting overall data quality, that takes into consideration three factors: the stability 
of the control, the level of accuracy of the rating curve, and the effect of ice cover. The latter 
aspect is of extreme importance in countries experiencing colder climates. Each of these 
factors is evaluated to give an individual “factor index” that is then combined to form a 
“composite index” for a particular station for both open water and periods subject to ice 
formation. It should be noted that not all sites are necessarily subject to ice formation within 
Canada, due to local climatological conditions or the hydraulic conditions prevailing at the 
site. Each factor index is treated as an independent component of accuracy and is given an 
index value ranging from 0 to 10, with higher values inferring better conditions. 
 
11.3.1 Stability of the control 
The stability of the control is considered only as a function of the stability of the bed material. 
A sand bed is considered relatively unstable and is given an index of 2, while a cobblestone 
bed is given an index of 5, and a solid rock control is given an index of 10. There is flexibility 
allowed in the allotment of values for certain bed types, as the stability of the channel may 
change with stage and other conditions. 
 
11.3.2 Level of accuracy of the rating curve 
The index representing the accuracy of the rating curve was chosen simply to reflect the 
degree of extrapolation of the stage-discharge relation necessary in the estimation of values 
of discharge from measures of stage. A separate index is assigned to the upper and lower 
portions of the curve, as the extremities of the relation may behave differently. 

Extrapolations less than one times the gauged flow, on either end, are given a 
maximum index of 10. Extrapolations to 1.5 the nearest gauged flow are given a value of 5, 
while extrapolations beyond twice the nearest gauged flow are assigned a value of 2. 

 
11.3.3 Ice effect 
The maximum value of 10 is associated with sites where the percentage correction due to ice 
effect of the observed discharge in establishing the corrected discharge is less than 15%. A 
score of 10 reflects sites with no ice formation or with minimal effect of ice on the open-
water rating curve. Corrections between 30 and 50% are assigned an index of 5, while 
corrections higher than 50% are assigned an index of 2. 
 
11.3.4 The Composite Index 
These factor indices are then combined for the differing conditions to provide a composite 
index reflecting the overall accuracy of the data. Tables showing the index for each factor 
provide a quick means of assessing what may be impacting on the quality of the records for 
the particular site. 
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Table 11.2 illustrates the derivation of the rating-curve factor index for three 
hypothetical stations. The minimum and maximum aspects of the curve are reflected 
separately, then totaled and divided by 2 to provide the factor index for accuracy of the rating 
curve. 

 
 

Table 11.2. Derivation of the factor index for rating curve accuracy for three hypothetical 
stations. 
Station Minimum Rating Curve Maximum Rating Curve Total Factor Index 

1 2 4 6 3.0
2 10 2 12 6.0
3 2 7 9 4.5

 
 

Table 11.3 shows the factor indices and the derivation of the composite index for the 
three hypothetical stations. The composite index is the simple average of the factor indices. 
This approach provides an equal weighting to each factor. The right-most column in Table 
11.3 is the resulting composite index. 

 
 

Table 11.3. Derivation of the composite index for three hypothetical stations. 
Factor Index  

Station Stability of 
Control 

Ice Effect Rating Curve Total 
 

Composite 
Index 

1 5 4 3.0 12.0 4.0
2 10 8 6.0 24.0 8.0
3 2 10 4.5 16.5 5.5

 
11.4 Stream water quality networks 
 
Alexander et al. (1998) describe a comprehensive collection of water quantity and quality 
data by the USGS including measurements for 122 physical, chemical, and biological 
properties of water at 680 monitoring stations. These sites are from two water quality 
networks. The first is the Hydrologic Basin Network (HB1 which had previously been 
mentioned when referencing the work of Langbein & Slack (1982), who had termed it a 
“benchmark” network. It comprises from 50 to 63 small, ii disturbed basins. The basins range 
in size from 5 to 5,200 km with a median size of 148 km Water quality sampling was 
conducted from about 1967 through to 1996. Water quality sampling at HBN sites was 
discontinued in 1997. The second water quality network is the National Stream Water Quality 
Accounting Network (NASQAN). 

NASQAN historically comprises up to 618 sites, ranging in size from 3 to 3 million 
km with a median size of 10,400 km These sites represent mostly non-pristine basins, as the 
impetus for this network was to quantif3r long-term trends in national water quality and 
assess the sufficiency and effectiveness of pollution control legislation. This network was 
initiated in 1973, with just 51 sites. The number of sites fluctuated throughout its history and 
had approximately 400 stations from 1987 to 1992. The number of sites had declined to 140 
sites in 1995, and in 1996 the network was reconfigured to cover 39 basins and included a 
broader range of parameters. 
These sites within the HBN could be very valuable for assessing the potential impacts of 
climate change on the environment. The potential utility of the network for monitoring 
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change from a water quality perspective has been lost. In comparison, the NASQAN provides 
an excellent source of material to evaluate and assess human impacts on the quality of the 
water. 
 
 
11.5 Discussion 
 
From the review of the selection criteria for hydrometric networks, it is evident that previous 
efforts in hydrometry tended to choose somewhat similar criteria. There is, however, a major 
distinction that could be made between efforts in hydrometry with those of the surface 
climate data efforts. It is evident in the work of Vose et al. (1992), Jones (1994), and GCOS 
(1998) that climate stations reflecting direct human contamination of data, such as the heat-
island effect, are acceptable. In contrast, hydrologists have paid special attention in ensuring 
that the data from hydrometric sites were as free as possible from direct human interference 
on the landscape. 

To assess the potential for human interference within hydrometric data as well as for 
assessing the accuracy of the measurements, local expert knowledge is required. The 
application of selection criteria without the participation of local experts having site specific 
knowledge will potentially result in specialised networks containing sites of dubious quality 
and worth. Analysis of such networks may lead to erroneous conclusions or hamper the 
identification of change attributable to climate change and variability. 

An important aspect that should not be overlooked is the need to obtain visibility for 
the hydrological network for climate change detection within the scientific and policy 
communities. Efforts must be made to underline the importance of the specific stations that 
have been selected for inclusion in such specialised networks. Without suitable monitoring of 
potential change and support to its scientific analyses, it will be difficult if not impossible to 
ascertain the characterisation of change and the sufficiency of political measures taken to deal 
with the implications. 
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CHAPTER 12 
 

PHASE RANDOMISATION FOR CHANGE DETECTION 
IN HYDROLOGICAL DATA 

 
Maciej Radziejewski, Andras Bardossy & Zbigniew W. Kundzewicz 

 
 
12.1 Introduction 
 
The issue of change detection in hydrological data is of much practical importance. Water 
resources systems are typically designed and operated under the assumption of stationarity, 
meaning that the essential characteristics of variability of hydrological processes do not 
change with time. If this assumption is abandoned, existing codes of design of water 
resources systems, dams, levees and other water engineering works would have to be revised. 
Otherwise, the systems would be either underdesigned or overdesigned, i.e. either missing the 
target or becoming overly costly. 

Many tests for trend detection have been used in studies of long time series of 
hydrological data. Yet, every test requires a number of assumptions to be satisfied. When 
underlying test assumptions are not fulfilled, acceptance and rejection regions of the test 
statistic cannot be rigorously determined. Therefore, such tests should be treated as methods 
of exploratory data analysis rather than as rigorous testing techniques. 

The assumption of normality, needed in the case of parametric tests, may be an 
unacceptably simplifying one in the context of strongly positively skewed hydrological data. 
In the case of non-parametric, robust tests, one does not need to assume a distribution. Hirsch 
et al. (1991) found that non-parametric procedures offer large advantages when the data are 
strongly non-normal, and suffer only small disadvantages (in terms of efficiency of power) 
for normally distributed data. 

Even though no distribution needs be assumed, non-parametric tests still make 
assumptions. Usually, an assumption of temporal independence must be made. When 
analyzing a time series of river flows, this assumption may be adequate for annual flow 
records. However, for shorter time intervals, such as months or days, it is not likely to hold. 
 
12.2 Technique of phase randomization 
 
The technique of phase randomisation is a way of generating data whilst preserving the 
autocorrelation structure of the raw series. The idea stems from the Fourier transform 
philosophy, converting an original time series into a frequency domain - amplitude and phase 
spectra. Consider a continuous example where the time series of observed data is given as a 
function f(t). 

By m2king Fourier transform of f(t) one obtains 

 )()()()( ωφω ωω iti eFdtetfF == ∫
+∞

∞−

−  (12.1) 

where i is the imaginary unit, ω is the frequency, F(ω) is the Fourier transform, |F(ω)| is the 
amplitude spectrum and φ(ω) is the phase spectrum of the function f(t). 

The amplitude spectrum in the frequency domain, |F(ω)|, is linked with the 
autocorelation function of the original signal f(t) in the temporal domain 
The principle of the phase randomisation technique is to generate a signal while keeping the 
amplitude spectrum of the original signal, by changing (randomising) the phase spectrum. 
The generated time series has the same autoconelation structure as the raw series. Preserving 
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the amplitude spectrum in the complex domain is tantamount to preserving the 
autocorrelation properties in the temporal domain. 

The three essential steps of the phase randomisation are shown in Table 12.1. 
 
 

Table 12.1. Phase randomisation. 
A Fourier transformation to the spectral domain. The Fourier transform (amplitude and 

phase spectra) of the resulting standardised series are computed. 
B Randomising the phases in the phase spectrum, keeping the power spectrum 

preserved. 
C Reverse Fourier transformation, back to the temporal domain. 
 
 

The use of this method for trend detection in the present study is similar to the spirit 
of bootstrapping. Like bootstrapping, phase randomisation is used to obtain test significance 
levels and the method can be applied to any selected test statistic. Phase randomisation avoids 
the need to use classical formulae for rejection / acceptance ranges of the test statistics — 
which are based on strong simplifying (hence unacceptable) assumptions. Phase 
randomisation is likely to be particularly useful for testing series with strong autocorrelation 
in the data, e.g. daily hydrological series. 
 
12.3 Methodology 
 
Phase randomisation is recommended as a useful technique in its own right that avoids the 
restrictive assumption of independence of observed data. Moreover, as will be shown in this 
contribution, the phase randomisation technique lends itself well for comparing available 
statistical testing approaches. 

In order to obtain a synthetic, trend-free series, out of a natural flow record, the 
following procedure was conducted. Good quality raw data was subjected to normalisation, 
de-seasonalisation and Fourier transformation. Keeping the amplitude spectrum preserved, 
the phase spectrum was subjected to randomisation. In this way a number of realisations were 
generated while preserving the essential properties of the raw series. After transforming back 
to the temporal domain, the data were contaminated with either linear trends or an abrupt 
jump. The changes were of various strengths measured as a ratio of the amplitude of the trend 
or jump, and the standard deviation of the series to which they were added. The series were 
subjected to a number of statistical tests. 

The algorithm of the proposed methodology is shown in Table 12.2. 
The assessment of significance level was made as follows. Suppose that a time series 

f(t) is to be investigated and that a test statistic S(f) is calculated. In order to assess the 
significance of the result, N time series with prescribed properties are generated. For each of 
these series the test statistic S is recalculated. Suppose they are ordered: 

 
 S(f1(t)) < S(f2(t)) < ... < S(fN(t)) (12.2) 
If  S(fm(t)) < S(f(t)) < S(fm+1 (t)) (12.3) 
 
then the probability of not exceeding S(f) is 
 p = m / N (12.4) 
Ties in (12.2) and (12.3) can be handled as usual, by taking an appropriate average. Now, the 
result would be significant on the 95% level if the probability were above 0.975 (indicating a 
high result) or below 0.025 (indicating a low result). A notion of significance defined in 
terms of this probability will be used herein as: 
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 Significance = 2 p – 1 (12.5) 
 
 The absolute value of significance corresponds directly to the significance level 
achieved, while the sign indicates the direction of the change. 

Attention: The convention used here differs from the one in Chapter 5. Significance of 
95% here corresponds to 5% in Chapter 5. 

 
Table 12.2. Algorithm of the proposed methodology. 
0 Departure point: long time series of raw data of good quality. 
1 Normalization of the distribution, by replacing each term with the value which would 

have had the same non-exceeding probability in the Gaussian distribution. This step 
preserves the relative ranks of the data. 

2 De-seasonalization. The annual cycle was removed by subtracting the regime and 
dividing the residue by seasonal standard deviations. 

3 Phase randomisation (Table 12.1) 
4 Artificial trends/ step changes were added to the series generated from step 3. Then the 

original distributional and seasonal properties of the series were restored by reversing 
the steps 2 and 1. The resulting series was tested for changes. 

5 Comparison of test statistics for a contaminated series with those obtained for all series 
generated from this one by further phase randomisation, in order to replace each 
statistic’s value by the corresponding significance. The process was repeated for all 
contaminated series and the mean significance was calculated for each shape, strength 
and statistic under study. 

 
 
12.4 Comparison of tests 
Hydrological change may take different forms, e. g. abrupt jump versus gradual monotonic 
change (trend), and may occur in the mean and / or in variability (variance, extremes, 
persistence). In addition, there are complicating factors such as seasonality, missing values 
and in some cases, censored data and problems arising from small sample sizes. The ability to 
detect change using a test depends on the type of change, its magnitude, the length of the 
series and the time when the change occurs in the series. A particular test may work well in 
specific situations (e. g. for a gradual trend or an abrupt jump) and not so well elsewhere. 
Even so, many changes observed in real data do not necessarily fall in a single category; there 
exist intermediate cases. 

Two possible selection criteria are the power of the test and its computational 
efficiency. The former is a measure of how well the test detects trends — it looks at the 
probability of error (detection of false trend or failure to detect a real trend). The 
computational efficiency is of lesser importance given the massive growth in computer 
power, but can still be important in computationally-intensive Monte-Carlo studies and in 
multi-site analyses over large spatial regions. 

There are many parametric and non-parametric tests for change detection. Some 
parametric tests can be applied in a non-parametric way by testing either the ranks or the so- 
called “normal scores”, i.e. the series transformed in such a way that the marginal distribution 
becomes normal, while the relative ranks of the values are preserved. The tests used in the 
present study represent a selection of some of the most commonly used statistical tests and 
are further described in Radziejewski et al. (2000). These are: 
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No. 1. Mann’s test (non-parametric) 
No.2. Normal scores linear regression (non-parametric) 
No.3. Spearman’s rank correlation (non-parametric) 
No.4. Linear regression (parametric) 
No.5. Jump fitting to normal scores (non-parametric) 
No. 6. Jump fit to ranks (non-parametric) 
No. 7. Jump fit (parametric) 

 
12.5 Results 
 
12.5.1 Data used 
In order to reduce problems linked to data quality, a set of river flow observations stemnlmg 
from the USGS Hydro-Climatic Data Network (Slack et al., 1993) was used. The subset of 
202 series selected for investigations fulfilled the following criteria: sufficient length of 
continuous daily record (at least 60 years), lack of significant anthropogenic influence and no 
documented ice influence. The records of the river Greenbrier at Alderson, WV (1896-1985) 
and the river Mississippi at Clinton, IA (the 1879—1 967 part) have served as the basis for 
the artificially generated series. 

It is often necessary to run tests using aggregated data (typically—annual) in order to 
meet the usual test requirements of independence. The independence assumption is not 
needed here because significance levels will be determined using phase randomisation. This 
means that it is possible to test the full daily series, thus making maximum use of the 
available data. 

 
12.5.2 Results for test comparisons using artificial series 
Series contaminated with controlled artificial trends of different amplitude and form (2500 
series for each change type / strength) have been created following the procedure explained in 
Table 12.2. The results are used to compare test performance under phase randomisation and 
to evaluate how detection of change varies as a function of the magnitude of the 
contaminating trend. 

Figures 12.1—12.2 illustrate how well trend is detected for the series contaminated 
with changes in mean of strength from 0.1δ to 2δ, in 0.1δ intervals. The changes considered 
are abrupt jump and linear trend, respectively. Radziejewski et al. (1998) report on the results 
for other change types, such as broken line, gradual jump and rectangular pulse. 

In case of contamination with a linear trend (Fig. 12.1), tests 1—3 performed almost 
identically to each other and better than all the other tests. The parametric test 4 was the next 
best, but still, significantly worse except in cases of very strong trend. The better performance 
of tests 1-4 in the linear trend case is not surprising, since gradual monotone change is what 
these tests look for. Another close aimilarity is between test 5 and 6, with test 6 (jump fit to 
ranks) being marginally better. Again, these non-parametric tests performed better than their 
parametric counterpart (test 7). Tests 5 and 6 allowed the detection of changes they were not 
designed for, while test 7 was completely useless in this situation. The feature of detecting a 
broad range of changes is very important in real-life situations, where we have no 
information about the type of changes to be expected. 

As could be expected, for contamination with an abrupt jump (Fig. 12.2) tests 5 and 6 
give the best results. Again, there is a high degree of similarity between the two tests, both of 
them significantly outperforming test 7. Test 7 gave better results than tests 1—4 for the 
Mississippi-based series, but was of little use otherwise. Tests 1-4 all exhibited similar 
performance. The Mississippi river case, where the parametric test 4 does well, is interesting, 
but it could be a chance occurrence. 
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Fig. 12.1.  Linear trend detectability in artificial series based on the flow of the river 
Mississippi in Clinton, IA, USA. 
 

 
Fig. 12.2. Jump detectability in artificial series based on the flow of the river Greenbrier at 
Alderson, WV, USA. 
 
 
12.5.3 Results for natural flow series 
Out of the 202 natural flow series under study, 23 showed a significant increase (at the 5% 
level) and only 4 a significant decrease. Tests 4 and 7 gave hardly any significant results at all 
with much better detection of change occuring when the non-parametric tests are used. 
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Fig. 12.3. Link between cummulative frequency and significance for natural series (a subset 
of 202 flow series from HCDN). 
 
 
The prevailing direction of change is towards increasing flow, this is most clear when all the 
results (significant and non-significant ones) are considered. It can be readily observed when 
significance level is plotted against the percentage of the series with the same, or lower, level 
(Fig. 12.3). One can also see, that the parametric tests identify fewer changes than the non-
parametric ones. That may suggest that the changes occurring in natural flow series affect the 
mean flow relatively less than other parameters of the distribution to which the non- 
parametric tests are more sensitive. 

It seems that tests 1-3 give very similar results and are particularly recommendable 
when applied using phase randomisation techniques for data series with temporal 
dependence. 
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CHAPTER 13 
 

SIMULTANEOUS ESTIMA11ON OF TRENDS 
IN MEAN AND VARIANCE 

 
Witoki G. Strupczewski 

 
13.1 Introduction 
 
Investigation of trend in long time series of hydroclimatological data is mainly aimed at 
detection of change of the mean value. However, the change may go beyond the first 
statistical moment. In particular, a trend in the second moment can be of much importance to 
ecosystems, socio-economy and individuals. For example, increasing trend in variance of 
winter air temperature means that severe winters are more likely while a change in auto- 
correlation function affects likelihood of a sequence of severe or mild winters. The scope of 
this paper is constrained to a parametric method of simultaneous estimation of trend in mean 
and variance. It should be stressed that, even if only investigation of trend in mean is of 
concern, heteroscedasticity has to be taken into account. Therefore investigating a long time 
series of unknown character, it is best to assume the most general case, i.e. of functionally 
non-related trends in the both first statistical moments, and then to proceed to simpler cases 
ending at the stationary case, from this identifying the best-fitting model. The investigation 
can comprise various functional forms of trend, e.g. linear, parabolic or the periodic functions 
of titne, while keeping in mind the need for parameter parsimony. Statistical significance of 
detected trends is not tested but the model showing the best fit of all competing models is 
taken as the optimal one. 
 
13.2 Discussion of methods 
 
The Maximum Likelihood (ML) method is the most theoretically rigorous approach to 
estimation of trends in both mean and variance in the sense that, under appropriate 
distributional assumption, it produces asymptotically efficient and unbiased estimates of 
time- dependent moments. Strupczewski & Feluch (1998) used it in flood frequency analysis 
under non-stationarity. They developed the Identification of Distribution and Trend (IDT) 
software package which identifies an optimum flood frequency model with time dependent 
parameters from a class of competing models that are useful in design of structures in a 
changing environment. The notion of a model is understood here as a type of probability 
distribution function (pdf) together with a class and form of trend in the two first moments. 
The original parameters of the pdf are expressed in terms of time-dependent moments using 
relationships between moments and parameters available in statistical literature and, in effect, 
the trend is explicitly introduced to the moments. The IDT program estimates model 
parameters from the time series, derives the covariance matrix and estimates the probability 
distribution of exceedance with confidence intervals for any given year or a period of any 
length optionally located along the time axis. The Akaike Information Criterion (AIC) 
goodness-of-fit test is used to identify an optimum model. 
One notes that the use of the ML method links the estimators of time-dependent moments 
with the type of pdf. Therefore the values of trend estimators depend on an assumed pdf; a 
shortcoming of using the ML method for trend estimation. In practise, the “true” pdf is not 
known and the hypothetical one can differ substantially from it. Superiority of ML- 
estimators of moments over those of the method of moments (MOM) relies on the 
distributional assumption. An effort to relax the distributional assumption in trend 
investigation resulted in development of the Weighted Least Squares (WLS) method 
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(Strupczewski & Kaczmarek, 1998), which is a generalisation of the Least Squares method 
for time-variable variance. 
 
13.3 Weighted least squares method 
 
The principle of the WLS method is based on the minimisation of sums of weighted squared 
deviations of observed and estimated moments, where the weights are reciprocals of their 
expected values (Strupczewski & Kaczmarek, 1998). The WLS, being conceptually quite 
distinct from the ML-method, coincides with the ML method in the case of normally 
distributed data. In this case a simple presentation of the WLS as a problem of the ML- 
estimation is possible. 

The log-likelihood function in a time series subject to normal distribution with time- 
variable parameters has a form: 
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where mt = m(g, t) and σt = σ(h, t) are time-dependent mean and standard deviation, 
respectively, while the g and h are vectors of parameters. 
The conditions of maximum log L are: 
 

 
( )∑

=

=
−

⇒
T

t

t

t

tt

dg
dmmx

dg
Ld

1
2

0
log

σ
 (13.2) 

 

 ∑ ∑
= =

=
−

+−⇒
T

t

T

t

t

t

ttt

t dh
dmx

dh
d

dh
Ld

1 1
2

2)(1log σ
σ

σ
σ

 

 ( )[ ]∑
=

=−−=
T

t

t
ttt

t dh
d

mx
1

22

3
0

1 σ
σ

σ
 (13.3) 

 
Note that both sets of equations contain both time-dependent mean (mt) and variance 

(σt), i.e. they need to be solved jointly unless the standard deviation can be assumed to be 
constant. The WLS method covers four classes of trend, i.e.: 
A -  trend in the mean only, which is the common least squares problem of trend estimation 
B -  trend in the standard deviation only; 
C -  trend both in the mean and standard deviation being functionally related, e.g. by a 

constant value of the variation coefficient (cv); 
D -  non-related trend in the mean and standard deviation. 

The most basic case is that of time-invariable moments, is called the stationary option 
(S). In this case, equations (13.2)-(l3.3) reduce to the MOM equations. 

The test of goodness-of-fit based on Akaike Information Criterion serves to identify 
an optimum model in a class of competing models of trend: 

 
 AIC = -21nML + 2k (13.4) 
 
where ML denotes the maximum likelihood for the model and k is the number of fitted 
parameters. The best approximating model is the one, which achieves the minimum AIC 
value in the class of competing models. 
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Equations (13 .2)-( 13.3) derived here for the ML-estiniation of time-variable parameters of 
normally distributed variables are equivalent to the WLS equations and as such they remain 
valid for other distribution functions providing that certain conditions are fulfilled. Table 13.1 
shows applicability of equations (13.2)-(13.3) for various two- and three-parameter 
distribution functions and various classes of trend. A constant value of the coefficient of 
variation is accepted for the class C. Six pdfs were examined, namely: Normal (N), two- 
parameter Lognormal (LN2), three-parameter Lognormal (LN3), Gamma (P2), three- 
parameter Pearson (P3) and GEV of the first type, i.e. Fisher-Tippett of the first type (FT). 
Shading indicates applicability of the WLS method for the case, while dark colour denotes 
the cases of equal weights, i.e. where both the LS method or MOM are applicable. An 
absence of shading indicates cases where equation (13.3) does not hold. The constraints of 
the WLS method do not restrict, in any significant way, its climatological or hydrological 
application. This is because the lack of a prior information on the functional form of the 
probability distribution gives a certain freedom of a distribution choice. For example, instead 
of the two- parameter Lognormal (LN2) or Gamma distribution (P2), three-parameter 
distributions with time invariant coefficient of asymmetry can be assumed (e.g. LN3 or P3). 
With this approach, the WLS method is effectively applicable in all the above cases. 
 
 
Table 13.1. Applicability of the Weighted Least Squared Estimation (WLS) of trend for 
various types of probability distribution and various classes of trend. c is the coefficient of 
assymetry. 
 

Model Distribution 
Trend N LN2 LN3 P2 P3 FT 

S       
A       
B   cs=const  cs=const  
C   cs=const  cs=const  
D   cs=const  cs=const  

 
 

A rough assessment of the type of probability distribution can be made using 
observed time series. This should be followed by a more detailed analysis performed on the 
series reduced to stationary conditions, e.g. assuming a normal distribution for the series 
(Y1,Y2,…Yt,..), where Yt = (Xt — mt)/σt is the standardised variable. 

For example, consider the case of a class D with trend of linear form, i.e. mt=a+bt 
and σt=c+dt 

Then equations (13.2) and (13.3) take the following form: 
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while the AIC formula reads 
 
 AIC = - 1n ML + 8 (13.4) 
 

To solve equations (13.2a-b) and (13.3a-b), a gradient method was applied with 
moment estimates of the stationary case as the starting vector. 

Strupczewski & Mitosek (1998) demonstrate the importance of relaxing the 
assumption of homoscedasticity in an investigation of linear trend in annual peak flow series 
of Polish rivers. Out of 39 series covering the common period of 192 1-1990, the stationary 
model (S) was preferred in 14 cases, while the A, B, C and D models were found to be the 
best in 1, 6, 17 and 1 cases, respectively. The predominant identification of the class C model 
(with constant coefficient of variation) gives evidence of a strong positive correlation of 
trends in the mean and in the standard deviation. According to the AIC, allowing for time-
variable variance may significantly improve the fit of a model. In fact, it also affects the 
estimated trend in the mean. The average difference in the gradient of trend in the mean 
between class A (time-constant variance) and classes C and D is 26% for the 18 series in the 
C and D classes above. Analysing equation (13.4), one can see that its first term accounts for 
the criterion of a good statistical fit and its value is growing with the series length. The 
second term represents the doctrine of parameter parsimony in AIC. Therefore, the longer the 
time series the higher a chance of selection of multiparameter forms of trend and the class D 
instead of C. 
 
13.4 Conclusions 
 
The presented method enables estimation of the trend in the two first moments of time series 
and identification of optimum trend model from a set of competing models. For selection of 
alternative forms of trends in both moments both visual properties of a time series and its 
length should be taken into account. The results of the case study corroborate the need to 
account for time-dependent variance when investigating trend in time series of 
hydroclimatological data. 
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Appendix 1 
 

GUIDELINES: SOFTWARE 
 

Felix Portmann 
 

Working on time series analysis leads irrevocably to the use of software. Only in special 
cases manual methods replace or assist software. 

Users should take into account that the software use for statistical analysis is 
threefold: 

• Data preparation: 
In the beginning, the data exist often in various forms and must be transformed into 
the format that the specific software can read. Perhaps missing values have to be 
excluded, marked or replaced by estimated ones. Instantaneous values have to be 
aggregated to daily, monthly, annual series and annual maximum series or partial 
duration series have to be generated. Either the statistical software helps with the data 
preparation or the user has to do it on her/his own. 

• Statistical analysis: 
At this core analysis, the data is analysed with a statistical software and results in 
primary form are produced. These may be in the form of tables, graphs, semantic 
information like rejection of hypothesis, etc. Interpretation of the results follows. 

• Presentation of results: 
Finally, the primary and conclusive results have to be compiled in a desired form, e.g. 
a report, presentation slides, a scientific publication, etc., and not only as plain 
hardcopy text or graphs on a sheet of paper. The compilation often needs additional 
treatment, e.g. annotation of graphs, inclusion of additional material, etc., normally 
done nowadays with software, too, e.g. Office software and Drawing software. 

When choosing software, users should be aware of the scope of their analysis, e.g.: 
• data checking for calculation of frequency statistics 
• number of series to analyse 
• form of presentation 
For in-house data checking, especially for a small number of series, a manually organised 

sequence of analyses with simple output might be sufficient. When using large number of 
series, automatic procedures should be present. Furthermore, when the results have to be 
included into a final document or presented at a conference, for their inclusion with the 
specific editing software an accepted format (format of graphical metafile, e.g. WMF, JPG, 
TIF, PCX GIF, PICT, or of text, e.g. ASCII or RTF) and necessary type and quality (black & 
white vs. colour, colour depth, adequate and correct representation of style of text and points, 
lines, legends, annotations in graphics, pixel resolution, etc) have to be chosen, as retyping is 
not always possible or feasible. Any format of results supporting the final treatment is more 
appropriate than a format ensuing additional steps or even impeding the production of the 
final product in the case of incompatibility. Also, the reproduction form (paper vs. transparent 
media) and costs (black & white vs. colour, PostScript or not) should be considered. In this 
respect, hardware for the production of the output may be important to check, e.g. PostScript 
capability of printer or colour printer. Perhaps adjustments of colours in graphs have to be 
made to get a readable and ready-to-print or ready-to-photocopy hardcopy. 

The specific circumstances can be very different, as the goals of the analysis, the 
organisational framework and the available hardware may be very different, but decisive, too. 

As it is impossible to be comprehensive with respect to that situation, only statistical 
software will be treated in detail here, not software needed for the other components. 
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Users should keep in mind that any software may present errors, either open or hidden 
ones. Therefore, results of statistical software should not be taken for self-evident. Common 
sense and checking important framework conditions, e.g. sums, can avoid relying on wrong 
results. 

Another problem with software is inappropriate or bad algorithms. E.g., often the so- 
called “random generators” do not generate truly random series, but biased ones. Besides 
that, when doing own programming, any correction for sample size should be done in the 
proper way. 

Considering software specifications, the workshop experts concluded that currently 
no software exists that covers all recommended features; many approaches like permutation 
or bootstrapping have to be programmed or implemented at your own. Especially 
standardised time series analysis software often do not accept missing values. Estimation of 
those often remains a problem that has to be resolved externally from the statistical software. 
Therefore, the experts emphasise the need of 

• Development of a software with the desired features 
The realisation of this goal is beyond the scope of this workshop itself, as the 
programming effort will be considerable. WMO is informed through its participant of 
this central view of the workshop experts. Funding of such an enterprise could be 
proposed e.g. within the 5 Research & Development Framework Programme of the 
European Commission. 

However: 
• For specific applications solutions can be programmed at your own either directly, 

via programming libraries, or within statistical programming frameworks, e.g. 
SPLUS. Users should be aware that this takes some time but can result in optimised, 
very quick analyses within a common data framework. 

• Some work can be done by already existing special software or even general 
purpose statistical software, e.g. SYSTAT. A selected software often presents only 
partial solutions. When using different software at a time, the raw data sets have to be 
brought into the specific data format. This requires some efforts, especially pre-
processing of missing values that many programmes do not accept. Own 
programming may be required or very useful for the pre-processing. 

• WMO has a collection of programmes within the HOMS (Hydrological Operational 
Multipurpose System), of which many, but not all, are freely available. A list of 
freely accessible software for specific tasks, some of them within HOMS, is given in 
the following table. Please note, that the list is not exhaustive, but has been selected 
especially to provide information on freely or easily obtainable software which is 
giving high-quality output and does not normally need very sophisticated hardware. 
Experts designed and used these programmes, they can recommend these for specific 
tasks. For more details, readers may contact either the WMO internet site 
(http://www.wmo.ch/web/homs/homshome.html), the authors of the software or the 
author of this contribution. 
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Key name Descriptive 

name 
Author/ 

originator 
institution 

General and 
specific 

application 

Specific test included Input data Output Miss. 
Values 

Operation 
remarks 

Con- 
ditions 
on use 

Costs  Further
comments 

General 
comment on 

practical 
applicability 

Software already available 
HOMS 
Component 
I00.1.02: 
 
TMESER 

Statistical 
analysis of 
long time 
hydrological 
data 

WMO WCP 
Water Project 
A.2; WMO 
Hydrology and 
Water 
Resources 
Department 

Selected 
statistics to 
identify long-
term 
variability, 
trends and 
jumps, non-
stationarity 

Descriptive statistics; 
monthly ranks, AC, 
cumulative periodogram, 
variance spectrum, 
adjusted range, rescaled 
adjusted range, Hurst’s 
coefficient, runs, trends 
(mean, variance), jump 
(mean), low pass 
Gaussian filter 

Monthly 
(M), annual 
(A) 

File:  listings 
and alpha-
numerical 
plot for 
whole series 
and sub-
series of 5, 
10, 20, 30 
years 

No FORTRAN
source code; 
sample data 

 No 
restric-
tions 

Free of 
charge 

Reference year 
may be 
specified; 
documentation 

Useful 
especially for 
descriptive 
statistics; no 
automatic 
display of 
most 
significant 
test results; 
free use 

HOMS 
Component 
I00.3.02: 
 
CHPP 

Change point 
problem 

Czech 
Hydrome-
teorological 
Institute 
(CHMI) 

Detecting 
point changes 
in hydrological 
and 
meteorological 
series 

Descriptive statistics, 
autocorrelation (AC), 
partial AC (PAC), 
normality, 
independence, 
periodogram, runs, ump 
(mean, variance) 

M, A Screen, 
graphics, 
listings also 
as files and 
to printer 

No (Yes 
at 
specific 
tests) 

Executable, 
MSDOS3.3+ 
colour screen 
(VGA);  
sample data 

No 
restric- 
tion 

Free 
licence 

Selection of 
subseries, 
automatic 
display of 
most 
significant test 
results; 
documentation 

Most 
significant 
test results; 
free use 

JUMP4 Jump in 
mean and 
variance 

Ruhr-Univ. 
Bochum, 
Germany 
(Andreas 
Schumann) 

Jumps in time 
series 

Descriptive statistics, 
jump(s); log-normal 
distribution 

M, A Screen, 
graphics, 
listings as 
file 

No Executable,
MSDOS; 
sample data 

 Contact 
author 

Contact 
author 

Query of 
comparable 
series on 
screen; several 
series at a time 

No automatic 
display of 
most 
significant 
test results; 
several series 
at a time 

KHRONO- 
STAT 

Time series 
analysis & 
segmentation 

ORSTOM, 
France 

Time series 
analysis 

e.g. rank correlation, 
Pettitt, Buishand, Lee & 
Heghinian, Hubert 

(M, A) Screen, 
graphics, 
tables 

NA Windows95   Free of
charge 

Bilingual (F, 
E) 

First version 
v.1.00 

SEG Segmentatio
n 

École des 
Mines de Paris 
(Pierre Hubert) 

Optimal 
segmentation 
into stationary 
sub-series 

Significance 0.05 or 
0.01, test of residuals 

Free (A) Listings as 
file 

No Executable,
MSDOS; 
sample data 

 Info, of 
author 

Free 
(www.ci
g.ensmp
.fr/~hub
ert/segm
ent.htm) 

Documentatio
n in French, 
English, 
Portuguese 

 

SPLUS Statistical 
Package 

Statistical 
Sciences 
(StatSci), Inc. 

Statistical 
package; trend, 
step change, 
graphical 
exploration 

Range of tests (trend, 
step change), 
regressions, graphical 
exploration, 
summarising data 
 
 

Various     Screen,
PostScript 
(PS) 

Various Unix,
Windows, 
MSDOS 

Licence GBP
1000 — 
2000 

 Programming 
necessary 

Very 
memory 
consuming; 
programming 
necessary 

146 



Key name Descriptive 
name 

Author/ 
originator 
institution 

General and 
specific 

application 

Specific test included Input data Output Miss. 
Values 

Operation 
remarks 

Con- 
ditions 
on use 

Costs Further 
comments 

General 
comment on 

practical 
applicability 

Software already available (continued) 
SSA Singular- 

Spectral 
Analysis 

      Spectral
analysis 

Correlogram, Multi-
Taper Method (MTM), 
Maximum-Entropy 
Method (MEM), Monte 
Carlo realisations 

Any 
univariate 
time series 

Screen, PS- 
graphics, 
tables, logs, 
vectors, 
series, power 
spectra 

No Unix
commands; 
standard 
FORTRAN 
77 

Free Free
(www.a
tmos.ucl
a/tcs/ssa
) 

Available as 
source code, 5 
main 
components 
may be used as 
stand-alone 
modules 

Tcl/Tk-X 
Windows-
GUI, 
visualisation 
also possible 
with IDL or 
public-
domain 
ACE/gr and 
gnuplot 

TREND1 Linear trends Ruhr-Univ. 
Bochum 
(Andreas 
Schumann) 

Linear trends 
in time series 

Descriptive statistics, 
trend(s); log-normal 
distribution 

M, A Screen, 
graphics, 
listings as 
file 

No Executable,
MSDOS); 
sample data 

 Contact 
author 

Contact 
author 

Query of 
similar trends 
on screen; 
several series 
at a time 

No automatic 
display of 
most 
significant 
test results; 
several series 
at a time 

TSA1 Time series 
analysis 

Norwegian 
Water 
Resources and 
Energy 
Administr. 
(Lars Roald) 

Time series 
analysis 

e.g. runs, trend, AC, 
jumps 

Daily (D), 
M, A, 
seasonal, 
annual 
maximum 
series 
(AMS) 

Tables, 
graphics 
(GPGS) 

Linear 
interp. 

Unix, 
FORTRAN 

Contact 
author 

Contact 
author 

  

Software available within short 
KOLIBRI Extreme 

value series 
Costa Rica 
Electricity 
Institute (ICE) 
and HYDRO- 
CONSULT 
AB, financed 
by SIDA 
(Sweden) 

Exploratory 
analysis and 
Extreme value 
analysis 

Control of randomness, 
trends, AC, outliers 

D, extreme 
values  
(Q, P) 

Tables and 
graphs 

Regis- 
tered 

PC software NA NA Developed for
data of humid 
tropics, 
manual 
available in 
English and 
Spanish 

 Will be 
available 
soon 
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Appendix 2 
 

HYDROSPECT - 
SOFTWARE FOR DETECTING CHANGES 

IN HYDROLOGICAL DATA 
 

Maciej Radziejewski & Zbigniew W. Kundzewicz 
 
 

Note: The software below has been developed under the WCP-Water framework It is free 
software containing implementation of a number of parametric and nonparametric tests 
commonly used in hydrological studies. It does not currently support the resampling methods 
recommended in this report. It is hoped that the software will be extended at a future date to 
allow resampling methods to be used. 
 
 
Hydrospect is a software package for detecting changes in long time series of hydrological 
data. It makes use of a set of eight different tests for change detection (linear regression, 
Mann-Kendall distribution-free CUSUM, cumulative deviations, Worsley’s likelihood ratio, 
Kruskal-Wallis, Spearman’s rank coefficient, normal scores regression) and provides a 
possibility to create customized derived series, all in a user-friendly Windows environment. 
The source code of Hydrospect, Version 1.0, has been written in Visual C The package 
delivered free to users consists of the executable programme file hydrospect.exe, three 
sample data files and the User’s Manual (.doc file in MS Word 97). 

Hydrospect is a contribution to the Project A (Analyzing Long Time Series of 
Hydrological Data and Indices with Respect to Climate Variability and Change) of the World 
Climate Programme - Water prepared for the World Meteorological Organization. This 
software was developed by Maciej Radziejewski under supervision of Zbigniew W. 
Kundzewicz. 

The programme can be run on a personal computer compatible with the IBM PC 
standard. The required processor is 486 or Pentium and the operating system — MS 
Windows 95 or 98. 
Creating or editing the data set is not supported within Hydrospect. The Hydrospect package 
follows a simple philosophy of working with the data as they stand, without modifications. 
Making changes to the data (for example correcting errors), can be done with another tool, 
e.g. a spreadsheet. 

Hydrospect can read data from text files. The import feature has been designed for 
flexibility, under consideration of a number of possible formats. Provision to deal with 
missing values and lines containing comments and other information has been made. 

If one wishes to study a time series with another program (e.g. to create a graph), one 
can save it in a text file. This is of particular use as Hydrospect allows one to perform a 
number of operations on a time series, i.e. derive new series from existing ones, and those 
derived series might be of some use elsewhere, too. 

Hydrospect returns the values of the test statistic and of the significance level actually 
achieved. High value of the actual significance level means that the hypothesis of a lack of 
change is rejected in the light of evidence, i.e. change is detected on a high significance level. 
It is essential to emphasize that all the tests included in Hydrospect are based on strong 
assumptions on the time series: temporal independence for all the tests used and normal 
distribution for some tests. Validity of these assumptions in particular cases guides our 
credibility in test results, in particular in the regions of the test statistics where the hypothesis 
should be accepted / rejected (not communicated to the Hydrospect user) and the confidence 
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levels (returned to the user). If assumptions are not fulfilled, the tests can be only interpreted 
as exploratory data analysis tools, rather than rigorous statistical methods. 

Hydrospect does not include tests for checking assumptions. In fuct, the assumption 
of normality is rarely valid in the realm of heavily skewed hydrological data. Such data can 
be easily transformed to normality by computing normal scores (see below), so the tests can 
be applied to the transformed, normally distributed series. The assumption of temporal 
independence depends on the time step. A time series of annual values may consist of 
independent elements, whereas the same process represented by monthly or daily data is 
likely to show an increasing level of temporal dependence. 

Standard procedures like ranking observations in a sample or removing annual regime 
from a series of flows can be seen as producing a new, derived time series, from an existing 
one. Hydrospect implements a number of such procedures. One can produce a number of 
derived series from any series. For example one can compute annual means and monthly 
means for a series of daily data as well as select a subseries consisting only of observations 
recorded in June. Then one can rank the annual means etc. The relationships between derived 
time series are presented in the left pane in the form of a tree. 

A list of time series operations supported by Hydrospect includes: 
-  Derived series with ranks assigned to each observation. 
-  Aggregation resulting in division of the series into subperiods and replacing the values in 

each subperiod by one value, the mean, the sum, the minimum, the maximum, the median 
or Tukey’s trimean. 

-  Creating a subseries of the time series of concern by restricting to a subperiod or to a 
certain part of the year, e. g. from December and January. 

-  Some tests for changes in the mean can be applied to detect changes in variance. This 
involves computing the distance of each value in the series from the overall mean and 
applying the test to the series of distances. 

-  Computing normal scores is supported in that the series is transformed in such a way that 
the marginal distribution becomes normal (with zero mean and unit standard deviation), 
while the relative ranks of the values are preserved. 

-  Deseasonalisation: the seasonal means (regime) are subtracted from each value and the 
remainder is divided by the seasonal standard deviation. The means and deviations are 
smoothed using harmonic functions. 

The Report menu entry allows one you to create a text file containing the results of all 
the tests performed during a session. 

 
 

References 
 
Radziejewski, M. & Kundzewicz, Z. W., 1999. Hydrospect, Version 1.0, User’s Manual. 
Unpublished manuscript. 
 
The software package Hydrospect and the User’s Manual are distributed free of charge by Dr 
Arthur J. Askew, Director of Hydrology and Water Resources Department, World 
Meteorological Organization, Geneva, Switzerland; (e-mail: askew_a@gateway.wmo.ch). 
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GLOSSARY 
 
 
Acceptance region – Set of test statistic values for which the null hypothesis is accepted.  
 
Alternative hypothesis – Counterpart to the null hypothesis (Section 5.2). 
 
Autocorrelation – A series shows autocorrelation if there is dependency between one value 

and the next. This is also called serial correlation, or temporal dependence. 
 
Biased – An estimate is biased if the average value of the estimate differs from the true value 

of the quantity or parameter that it estimates. 
 
Bootstrapping – A resampling method used for testing data (Section 5.4). 
 
Box plot – A visual data summary which shows: the smallest value, the three quartiles (see: 

quartiles) and the highest value (cf. Chapter 4). 
 
Climate change – A long term alteration in the climate (Chapter 1, Appendix). 
 
Climate variability – The inherent variability in the climate (Chapter 1, Appendix). 
 
Confidence interval – Range of values that a parameter is likely to fall within. If the 95% 

confidence interval is (A, B) then there is a 95% chance that the true value lies between A 
and B. 

 
Correlated – Variables are said to be correlated if they are related to each other in some way. 
 
Correlation coefficient – A measure of the association of two variables. The correlation 

coefficient is the covariance of two random variables (or data sets) divided by the product 
of their standard deviations. 

 
Covariance – A measure of the association between two variables. it is the expected value of 

the product of departures from the mean (mixed second central moment of two stochastic 
processes). 

 
Critical value – Value that separates the rejection and acceptance regions for a test statistic. 
 
Dependent – A variable is dependent if it is correlated with another variable. 
 
Deseasonalize – Remove the seasonal variation in a time series (e.g. annual seasonal pattern). 
 
Distribution-free approach – A method that does not require a specific probability 

distribution to be assumed (can be used for all distributions). 
 
Entropy (information-theoretic) – Measure of the degree of uncertainty or disorder. (Concept, 

germane to thermodynamic entropy, introduced in Shannon, C. E. (1948) A mathematical 
theory of communication, Bell System Tech. J., 27, 379-423, 623-659. 

 
Exploratory data analysis (EDA) – Graphical display of data in order to reveal essential 

properties (cf. Chapter 4). Instruments of EDA are scatter plots, box plots, etc. 
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Extremes (hydrological) – Values that are substantially different from the ordinary or usual. 
(e.g. floods and droughts are extreme hydrological events). 

 
Fourier transform – A time series technique that is used to break a series up into a sequence 

of sinusoidal waves. 
 
Heterogeneity – A sample shows heterogeneity if the values come from a number of different 

distributions (e.g. corresponding to different underlying physical mechanisms). 
 
Heteroscedasticity – Indicates that the variance of the data is not constant. 
 
Homogeneity – Property where by a whole sample comes from the same distribution. 
 
Homoscedasticity – Indicates that the variance of the data is constant. 
 
Independent – Data points are independent if they are not related to each other. If data are 

correlated, or show serial correlation or spatial correlation they are not independent. 
 
Interpolation – Estimating values of a variable between known values. 
 
Jump: see step change. 
 
Kurtosis – A measure of the peakiness of a distribution. See moments. 
 
Lag – A term used in time series methods. A lag 1 observation is the observation from the 

previous time step. A lag 2 observation is an observation from 2 time steps before. 
 
Loess/LOWESS /Locally weighted smoothing – A robust smoothing method (see Chapter 4). 
 
Maximum likelihood – Method of parameter estimation in which the likelihood function is ma 
 
Mean – The average of a series. See moments. 
 
Median – The middle ranking value of a series. See second quartile. 
 
Moments: Absolute moment – Expected value of a power of a random variable. Central 

moment - Expected value of a power of a difference of random variable and its mean. 
First (absolute) moment is the mean. Second central moment (about the mean) is 
variance. Next two central moments are called skewness and kurtosis. Mixed moments - 
see covariance. 

 
Monotonic change – A change that is consistently in one direction (either always upwards or 

always downwards). 
 
Multivariate analysis – A method for simultaneous analysis of a number of dependent 

variables (of time and / or space), including links between these variables. 
 
Non-parametric test – A test that does not involve estimation of parameters. Rank-based tests 

are non-parametric. 
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Non-stationarily – Indicates that the distribution of a random variable is changing with time 
e.g. increasing mean). 

 
Normal scores – The expected values of a sample from the normal distribution. 
 
Null hypothesis – Hypothesis to be tested. 
 
One-sided test – Statistical test where the rejection region is located in one tail of the 

distribution. 
 
Outliers – Values that appear unusual because they are distant from the bulk of data. 

Parametric test - A test that involves estimation of one or more parameters (linear 
regression is a parametric test because it involves estimation of the gradient of change). 

 
Persistence – Property of long memory of the system, whereby high or low values 

(excursions to high or low states) are clustered over longer time periods. Persistence is 
also referred to as autocorrelation or serial correlation. 

 
Phase randomisation – Data generation technique that preserves the autocorrelation structure 

of the data series. 
 
Power – A measure of how effective a test is. A test with high power is good at accepting the 

alternative hypothesis when the alternative hypothesis is true. 
 
Principal component analysis – A method of analysis in which multivariate data can be 

simplified. A small number of new variables (principal components) can be used to 
represent the original dataset. 

 
Probability density function – Function describing the distribution of data - it expresses the 

relative likelihood that a random variable attains different values. 
 
Quartiles – The quartiles mark the ¼ and ‘/ and ¾ positions in a dataset when the data are 

placed in size order. The interpretation of quartiles is as follows: lower (first) quartile - a 
value whose probability of exceedence is 75%; second quartile (median) - a value whose 
probability of exceedence is 50%; upper (third) quartile - a value whose probability of 
exceedence is 25%. 

 
Random variable – A numerically valued function defined over a sample space. Can be 

thought of as something that provides observations. 
 
Rank – The position of a data point when values are ordered by size. An observation has rank 

r if it is the rth largest (or smallest) observation (depending on the direction of ordering). 
 
Rejection region – If the value of the test statistics is in the rejection region, the null 

hypothesis is rejected. 
 
Resampling – A method for testing data in which artificial data series are generated from the 

original dataset and these series are used to obtain an estimate of significance level. 
 
Robust test – A statistical test which is not much affected by minor departures from 

assumptions on which it is based. 
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Sample size – Number of data elements in the sample. 
 
Seasonality – Seasonal (periodic) behaviour of variable. 
 
Segmentation – Method of finding abrupt changes in the time series by fitting a step-wise 

function (parameters: amplitude and time instant of a change). 
 
Serial correlation: see autocorrelation. 
 
Sign level – Probability of rejecting the null hypothesis when it is true (type I error). 
 
Skewness – A measure of the asymmetry (See moments). 
 
Smoothing – Replacement of the raw series by a more regular function of time that has less 

variability. 
 
Standardization – Transformation of data by subtracting the mean and dividing by the 

standard deviation. 
 
Stationarity – Property of a random variable whose statistical moments do not change with 

time. (Strict stationarity - first and second moments are constant with time. Weak 
stationarity - first moments are constant with time.) 

 
Statistical test of a hypothesis – Formal procedure to check whether the hypothesis can be 

rejected in the light of available evidence. 
 
Step change – Abrupt change in a time series. 
 
Temporal dependence: see autocorrelation. 
 
Test: see statistical test of a hypothesis. 
 
Test statistic – Numerical value calculated from information contained in the sample. The test 

statistic is used to determine whether or not to reject the null hypothesis. 
 
Tie – Situation where at least two elements in the data set have the same value. 
 
Time series – A sequence through time of observed values of a variable. Time series 

techniques include spectral methods and ARMA (auto-regressive moving average) 
approaches and related tests. 

 
Trend – Gradual change in a variable. Often assumed to be monotonic. 
 
Two-sided test – Statistical test where the rejection region is located in two tails of the 

distribution. 
 
Type I error for a statistical test – Rejecting the null hypothesis when it is true. 
 
Type II error for a statistical test – Accepting the null hypothesis when it is false. 
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Univariate analysis – Analysis in which a single dependent variable is considered (of time 
and br space). 

 
Unbiased (estimate) – An estimate is unbiased if its average (expected) value is equal to the 

quantity or parameter it estimates. 
 
Variance – A measure of the spread in a sample/distribution. (See moments). 
 
Variogram (called also semivariogram) – A technique used with spatial data to show how the 

covariance between points changes as a function of distance. 
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REPORTS PUBLISHED IN THE 
 

WORLD CLIMATE DATA PROGRAMME (WCDP)/ 
 

WORLD CLIMATE DATA AND MONITORING PROGRAMME (WCDMP) SERIES 
 

WCDP-1  WMO REGION III/IV TRAINING SEMINAR ON CLIMATE DATA MANAGEMENT 
AND USER SERVICES, Barbados, 22-26 September 1986 and Panama, 29 September - 3 
October 1986 (available in English and Spanish) - (WMO-TD No. 227) 

WCDP-2  REPORT OF THE INTERNATIONAL PLANNING MEETING ON CLIMATE SYSTEM 
MONITORING, Washington DC, USA, 14-18 December 1987- (WMO-TD No. 246) 

WCDP-3  GUIDELINES ON THE QUALITY CONTROL OF DATA FROM THE WORLD 
RADIOMETRIC NETWORK, Leningrad 1987 (prepared by the World Radiation Data 
Centre, Voeikov Main Geophysical Observatory) - (WMO-TD No. 258) 

WCDP-4  INPUT FORMAT GUIDELINES FOR WORLD RADIOMETRIC NETWORK DATA, 
Leningrad 1987 (prepared by the World Radiation Data Centre, Voeikov Main Geophysical 
Observatory) - (WMO-TD No. 253, p. 35) 

WCDP-5  INFOCLIMA CATALOGUE OF CLIMATE SYSTEM DATA SETS, 1989 edition - (WMO-
TD No. 293) 

WCDP-6  CLICOM PROJECT (Climate Data Management System), Apnl 1989 (updated issue of WCP-
1 19) - (WMO-TD No. 299) 

WCDP-7  STATISTICS ON REGIONAL NETWORKS OF CLIMATOLOGICAL STATIONS (based 
on the INFOCLIMA World Inventory). VOLUME II: WMO REGION I - AFRICA - (WMO-
TD No. 305) 

WCDP-8  INFOCLIMA CATALOGUE OF CLIMATE SYSTEM DATA SETS - HYDROLOGICAL 
DATA EXTRACT, April 1989- (WMO-TD No. 343) 

WCDP-9  REPORT OF MEETING OF CLICOM EXPERTS, Pans, 11.15 September 1989 (available in 
English and French) - (WMO-TD No. 342) 

WCDP-10  CALCULATION OF MONTHLY AND ANNUAL 30-YEAR STANDARD NORMALS, 
March 1989 (prepared by a meeting of experts, Washington DC, USA) - (WMO-TD No.341) 

WCDP-11  REPORT OF THE EXPERT GROUP ON GLOBAL BASELINE DATASETS, Asheville, 
USA, 22-26 January 1990 - (WMO-TD No. 359) 

WCDP-12  REPORT OF THE MEETING ON HISTORICAL ARCHIVAL SURVEY FOR CLIMATE 
HISTORY, Pans, 21-22 February 1990 - (WMO-TD No. 372) 

WCDP-13  REPORT OF THE MEETING OF EXPERTS ON CLIMATE CHANGE DETECTION 
PROJECT, Niagara-on-the-Lake, Canada, 26-30 November 1990 - (WMO-TD No. 418) 

 
Note:  Following the change of the name of the World Climate Data Programme (WCDP) to 

World Climate Data and Monitoring Programme (WCDMP) by the Eleventh WMO 
Congress (May 1991), the subsequent reports in this series will be published as WCDMP 
reports, the numbering being continued from No. 13 (the last UWCDP report). 

 
WCDMP-14  REPORT OF THE CCI WORKING GROUP ON CLIMATE CHANGE DETECTION, 

Geneva, 21-25 October 1991 
WCDMP-15  REPORT OF THE CCI EXPERTS MEETING ON CLIMATE CODE ADAPTATION, 

Geneva, 5-6 November 1991 - (WMO-TD No. 468) 
 
WCDMP-16  REPORT OF THE CCI EXPERTS MEETING ON TRACKING AND TRANSMISSION OF 

CLIMATE SYSTEM MONITORING INFORMATION, Geneva, 7-8 November 1991 - 
(WMO-TD No. 465) 

WCDMP-17  REPORT OF THE FIRST SESSION OF THE ADVISORY COMMITTEE ON CLIMATE 
APPLICATIONS AND DATA (ACCAD), Geneva, 19-20 November 1991 (also appears as 
WCASP-18) - (WMO-TD No. 475) 
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WCDMP-18  CCL WORKING GROUP ON CLIMATE DATA, Geneva, 11-15 November 1991 - (WMO-
TD No. 488) 

WCDMP-19 REPORT OF THE SECOND CLICOM EXPERTS MEETING, Washington DC, 18-22 May 
1992- (WMO-TD No. 511) 

WCDMP-20  REPORT ON THE INFORMAL PLANNING MEETING ON STATISTICAL 
PROCEDURES FOR CLIMATE CHANGE DETECTION, Toronto, 25 June, 1992 - (WMO-
TD No. 498) 

WCDMP-21  FINAL REPORT OF THE CCI WORKING GROUP ON CLIMATE DATA AND ITS 
RAPPORTEURS, November 1992- (WMO-TD No. 523) 

WCDMP-22  REPORT OF THE SECOND SESSION OF THE ADVISORY COMMITTEE ON CLIMATE 
APPLICATIONS AND DATA (ACCAD), Geneva, 16-17 November 1992 (also appears as 
WCASP-22) - (WMO-TD No. 529) 

WCDMP-23  REPORT OF THE EXPERTS MEETING ON REFERENCE CLIMATOLOGICAL 
STATIONS (RCS) AND NATIONAL CLIMATE DATA CATALOGUES (NCC), Offenbach 
am Main, Germany, 25-27 August 1992 - (WMO-TD No. 535) 

WCDMP-24  REPORT OF THE TENTH SESSION OF THE ADVISORY WORKING GROUP OF THE 
COMMISSION FOR CLIMATOLOGY, Geneva, 20-22 September 1995 (also appears as 
WCASP-34) - (WMO-TD No. 711) 

WCDMP-25  REPORT OF THE FIFTH SESSION OF THE ADVISORY COMMITTEE ON CLIMATE 
APPLICATIONS AND DATA (ACCAD), Geneva, 26 September 1995 (also appears as 
WCASP-35) - (WMO-TD No. 712) 

WCDMP-26  REPORT ON THE STATUS OF THE ARCHIVAL CLIMATE HISTORY SURVEY 
(ARCHISS) PROJECT, October 1996 (prepared by Mr M. Baker) - (WMO-TD No. 776) 

WCDMP-27  SUMMARY REPORT OF THE MEETING OF THE THIRD SESSION OF THE CCI 
WORKING GROUP ON CLIMATE CHANGE DETECTION, Geneva, 26 February - 1 
March 1996- (WMO-TD No. 818) 

WCDMP-28  SUMMARY NOTES AND RECOMMENDATIONS FOR CCI-XIl FROM MEETINGS 
CONVENED TO PREPARE FOR PUBLISHING THE FIFTH AND SIXTH GLOBAL 
CLIMATE SYSTEM REVIEWS AND FOR A PUBLICATION ON THE CLIMATE OF 
THE 20TH CENTURY, July1997 - (WMO-TD No. 830) 

WCDMP-29  CLIMATE CHANGE DETECTION REPORT - REPORTS FOR CCI-XII FROM 
RAPPORTEURS THAT RELATE TO CLIMATE CHANGE DETECTION, July 1997 - 
(WMO-TD No. 831) 

WCDMP-30  SUMMARY NOTES AND RECOMMENDATIONS ASSEMBLED FOR CCI-XII FROM 
RECENT ACTIVITIES CONCERNING CLIMATE DATA MANAGEMENT, July 1997 - 
(WMO-TD No. 832) 

WCDMP-31  REPORTS FOR CCI-XII FROM RAPPORTEURS THAT RELATE TO CLIMATE DATA 
MANAGEMENT, July 1997 - (WMO-TD No. 833) 

WCDMP-32  PROGRESS REPORTS TO CCI ON STATISTICAL METHODS, July 1997 (prepared by Mr 
Christian-Dietnch Schônwiese) (WMO-TD No 834) 

WCDMP-33  MEETING OF THE CCI WORKING GROUP ON CLIMATE DATA, Geneva, 30 January -3 
February 1995- (WMO-TD No. 841) 

WCDMP-34  EXPERT MEETING TO REVIEW AND ASSESS THE ORACLE-BASED PROTOTYPE 
FOR FUTURE CLIMATE DATABASE MANAGEMENT SYSTEM (CDBMS), Toulouse, 
France, 12-16 May 1997- (WMO-TD No. 902) 
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